首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starting from the efficient hexahydropyridoindole antioxidant stobadine, a series of carboxymethylated tetrahydro- and hexahydropyridoindole derivatives was synthesized and tested for the inhibition of aldose reductase, an enzyme involved in the etiology of diabetic complications. In vitro inhibiton of rat lens aldose reductase was determined by a conventional method. Kinetic analysis of (2-benzyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole-8-yl)-acetic acid (5b) and (2-phenethyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole-8-yl)-acetic acid (5c), the most potent compounds in this series with activities in micromolar range, showed uncompetitive inhibition. In addition to the importance of the acidic function, the inhibition efficacy was highly influenced by the steric conformation of the lipophilic aromatic backbone when comparing tetrahydro- and hexahydropyridoindole congeners. Selectivity with respect to the closely related aldehyde reductase was determined by measuring the corresponding inhibitory activities. Antioxidant action of the novel compounds was documented in a DPPH test and in a liposomal membrane model, oxidatively stressed by peroxyl radicals. The presence of a basicity center at the tertiary nitrogen, in addition to the acidic carboxylic function, predisposes these compounds to form double charged zwitterionic species, a characteristic which may remarkably affect their pH-lipophilicity profile. For compounds 5b and 5c, a maximal distribution ratio in a system comprised of 1-octanol/phosphate buffer was recorded near the neutral physiological pH, the region where the isoelectric point lies. Molecular docking simulations into the ALR2 active site performed for the zwitterionic species provided an explanation for the observed structure–activity relationships and the calculated parameters were in agreement with characteristic differences in the stereoelectronic profiles of the tetrahydro- versus hexahydropyridoindoles. ‘Drug-likeness’ of the novel aldose reductase inhibitors was assessed by applying the criteria of Lipinski’s ‘rule of five’.  相似文献   

2.
Recent evidence has suggested a role for the polyol pathway in pathogenesis of cell damage in diabetes Glucose may be phosphorylated to glucose-6-phosphate via hexokinase and enter glycolysis or reduced to sorbitol via aldose reductase to enter the polyol pathway. The poorly diffusible sorbitol is converted via sorbitol dehydrogenase to fructose. Hexokinase, aldose reductase and sorbitol dehydrogenase activities were measured in glomeruli (G) and small arteries (SA) taken from normal and diabetic human kidneys, Hexokinase in diabetic G was 1688, which was significantly decreased from normal, 3147 mmoles/kg-1/h-1. Alodse reductase was significantly elevated in diabetic G,56-6, compared to normal G,10-8 mmoles/kg-1/h-1. In contrast, sorbitol dehydrogenase was significantly depressed in diabetic G, 3-7 VERSUs 10-9 mmoles/kg-1/h-1. The enzymatic changes observed in diabetic G would facilitate accumulation of sorbitol and therefore could contribute to the progression of glomerulosclerosis. The activity of hexokinase was also significantly reduced in SA, whereas aldose reductase and sorbitol dehydrogenase were unchanged.  相似文献   

3.
The insulin mimetic effect of vanadate inin vitro incubation of erythrocytes with high glucose concentrations showed an increase in sorbitol accumulation and glucose utilization using U-14C-glucose. Aldose reductase inhibitors and vanadate addition reversed the sorbitol accumulation, whereas insulin could not reverse it. Increased glucose utilization was also normalized with vanadium compounds. Increased activity of aldose reductase and sorbitol levels in diabetic animals were also normalized with vanadate treatment.  相似文献   

4.
The polyol pathway, which comprises the enzymes aldose reductase and sorbitol dehydrogenase, is recognised to play a major role in the pathogenesis of diabetic complications. Although there has been extensive research on aldose reductase, the role of sorbitol dehydrogenase has been overlooked. This study examined the response of sorbitol dehydrogenase gene expression to streptozotocin-diabetes (STZ-diabetes) in the rat and whether these changes were reversed by insulin. STZ-diabetes increased testicular sorbitol dehydrogenase gene expression in a manner that was not reversible by insulin but had no effect on gene expression in kidney and brain. A secondary question was the relationship between sorbitol dehydrogenase and aldose reductase gene expression in STZ-diabetes. STZ-diabetes increased renal dose reductase gene expression in a manner that was not reversible by insulin but had no effect on gene expression in the brain, testes and muscle. Thus, STZ-diabetes causes changes in sorbitol dehydrogenase gene expression which do not parallel those in aldose reductase, implying that expression of the two genes is not regulated via a common mechanism. Furthermore, changes in sorbitol dehydrogenase and aldose reductase gene expression cannot be fully explained on the basis of the osmoregulatory hypothesis, suggesting that regulation is mediated via mechanisms that are multifactorial and tissue-specific.  相似文献   

5.
1. Sorbitol and fructose levels were significantly elevated in the lens, the sciatic nerve, the retina and the kidney of diabetic Chinese hamsters and inositol level was significantly decreased in the lens and sciatic nerve of diabetics. 2. The activity of an aldose reductase in the kidney was not different between normal and diabetic Chinese hamsters. 3. An aldose reductase inhibitor (ONO-2235) had no effect in sorbitol, fructose and inositol contents of all these tissues from diabetic Chinese hamsters. 4. These results suggest that diabetic Chinese hamsters produce polyol accumulation in tissues but that there is a clear species-specific difference to inhibition of aldose reductase.  相似文献   

6.
Accumulation of intracellular sorbitol due to increased aldose reductase (ALR2) activity has been implicated in the development of various secondary complications of diabetes. In this study we show that curcumin inhibits ALR2 with an IC50 of 10 μM in a non-competitive manner, but is a poor inhibitor of closely-related members of the aldo-keto reductase superfamily, particularly aldehyde reductase. Results from molecular docking studies are consistent with the pattern of inhibition of ALR2 by curcumin and its specificity. Moreover, curcumin is able to suppress sorbitol accumulation in human erythrocytes under high glucose conditions, demonstrating an in vivo potential of curcumin to prevent sorbitol accumulation. These results suggest that curcumin holds promise as an agent to prevent or treat diabetic complications.  相似文献   

7.
Complications common to type I diabetes, such as cataracts and cardiovascular disorders, have been associated with activation of the polyol pathway, which converts glucose to fructose via the intermediate, sorbitol. Under normal glycemic conditions, glucose is typically targeted for glycolysis or the pentose phosphate pathway through phosphorylation by hexokinase. When glucose levels are elevated under diabetic conditions, hexokinase becomes saturated, and the excess glucose is then shunted to aldose reductase, which converts glucose to sorbitol. In the present study, we examined the potential effects of this pathway on the maturation process in mouse oocytes. Increasing concentrations of sorbitol suppressed FSH-induced maturation in oocytes from control mice. Culturing oocytes from diabetic mice in the presence of inhibitors of aldose reductase reversed the suppression of FSH-induced meiotic maturation. When oocytes from control mice were cultured with activators of aldose reductase, FSH-induced maturation was compromised. In addition, treatment with sorbitol or activators of the polyol pathway led to reduced cell-cell communication between the oocyte and the cumulus cells, as well as compromised FSH-mediated cAMP production and de novo purine synthesis. These data indicate that the suppression of FSH-induced meiotic maturation observed in oocytes from diabetic mice may result from a shunting of glucose through the polyol pathway.  相似文献   

8.
Aldose reductase is the key enzyme of polypol pathway leading to accumulation of sorbitol. Sorbitol does not diffuse across the cell membranes easily and therefore accumulates within the cell, causing osmotic damage which leads to retinopathy (cataractogenesis), neuropathy and other diabetic complications. Currently, aldose reductase inhibitors like epalrestat, ranirestat and fidarestat are used for the amelioration of diabetic complications. However, such drugs are effective in patients having good glycemic control and less severe diabetic complications. In present study we have designed novel pyrazolone derivative and performed eco-friendly synthesis approach and tested the synthesized compounds as potential inhibitors of aldose reductase activity. Additional in silico analysis in current study indicates presence of highly conserved chemical environment in active site of goat lens aldose reductase. The reported data is expected to be useful for developing novel pyrazolone derivatives as lead compounds in the management of diabetic complications.  相似文献   

9.
Osmotic and oxidative stress have been implicated in the pathogenesis of diabetic cataract. Nigerloxin, a fungal metabolite, has been shown to possess aldose reductase inhibitory and free radical scavenging potential, in vitro. In the present study, the beneficial influence of nigerloxin was investigated on diabetes-induced alteration in the eye lens of rats treated with streptozotocin. Groups of diabetic rats were administered nigerloxin orally (100?mg·(kg body mass)(-1)·day(-1)) for 30?days. The activity of lens polyol pathway enzymes?(aldose reductase and sorbitol dehydrogenase), lipid peroxides, and advanced glycation end products (AGEs) were increased in the diabetic animals. Levels of glutathione as well as the activity of antioxidant enzymes?(superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase) were decreased in the eye lens of the diabetic animals. The administration of nigerloxin significantly decreased levels of lipid peroxides and AGEs in the lens of the diabetic rats. Increase in the activity of aldose reductase and sorbitol dehydrogenase in the lens was countered by nigerloxin treatment. The activity of glutathione and antioxidant enzyme in the lens was significantly elevated in nigerloxin-treated diabetic rats. Examination of the treated rats' eyes indicated that nigerloxin delayed cataractogenesis in the diabetic rats. The results suggest the beneficial countering of polyol pathway enzymes and potentiation of the antioxidant defense system by nigerloxin in diabetic animals, implicating its potential in ameliorating cataracts in diabetics.  相似文献   

10.
Aldose reductase inhibitors have considerable potential for the treatment of diabetic complications, without increased risk of hypoglycemia. Search for components inhibiting aldose reductase led to the discovery of active compounds contained in Evodia rutaecarpa Bentham (Rutaceae), which is the one of the component of Kampo-herbal medicine. The hot water extract from the E. rutaecarpa was subjected to distribution or gel filtration chromatography to give an active compound, N2-(2-methylaminobenzoyl)tetrahydro-1H-pyrido[3,4-b]indol-1-one (rhetsinine). It inhibited aldose reductase with IC50 values of 24.1 μM. Furthermore, rhetsinine inhibited sorbitol accumulation by 79.3% at 100 μM. These results suggested that the E. rutaecarpa derived component, rhetsinine, would be potentially useful in the treatment of diabetic complications.  相似文献   

11.
Recent efforts to identify treatments for chronic diabetic complications have resulted in the discovery of a novel series of highly potent and selective (2-arylcarbamoyl-phenoxy)-acetic acid aldose reductase inhibitors. The compound class features a core template that utilizes an intramolecular hydrogen bond to position the key structural elements of the pharmacophore in a conformation, which promotes a high binding affinity. The lead candidate, example 40, 5-fluoro-2-(4-bromo-2-fluoro-benzylthiocarbamoyl)-phenoxyacetic acid, inhibits aldose reductase with an IC(50) of 30 nM, while being 1100 times less active against aldehyde reductase, a related enzyme involved in the detoxification of reactive aldehydes. In addition, example 40 lowers nerve sorbitol levels with an ED(50) of 31 mg/kg/d po in the 4-day STZ-induced diabetic rat model.  相似文献   

12.
The increase of sorbitol and fructose levels caused by aldose reductase activation and sorbitol dehydrogenase inhibition were observed in sciatic nerve of streptozotocin-diabetic rats. Elevated polyol pathway activity has been implicated in the development of diabetic complications such as neuropathy. The regulation of polyol pathway enzymes is based on the changes of redox state of free nicotinamide nucleotides. The decrease of the NADP+/NADPH ratio in cytosolic compartment of sciatic nerve cells activated aldose reductase and the decrease of the NAD+/NADH ratio inhibited sorbitol dehydrogenase. Nicotinamide as a precursor of NAD+ biosynthesis increased the free NADP+/NADPH and NAD+/NADH ratios and inhibited the activity of polyol pathway. The sorbitol level decreased in sciatic nerve of nicotinamide-treated streptozotocin-diabetic rats as compared to non-treated ones. Thus, the data provide evidence for important role of nicotinamide, as an antidiabetic drug, in prevention or correction of diabetic neuropathy.  相似文献   

13.
Cells adapt to hyperosmotic conditions by several mechanisms, including accumulation of sorbitol via induction of the polyol pathway. Failure to adapt to osmotic stress can result in apoptotic cell death. In the present study, we assessed the role of aldose reductase, the key enzyme of the polyol pathway, in cardiac myocyte apoptosis. Hyperosmotic stress, elicited by exposure of cultured rat cardiac myocytes to the nonpermeant solutes sorbitol and mannitol, caused identical cell shrinkage and adaptive hexose uptake stimulation. In contrast, only sorbitol induced the polyol pathway and triggered stress pathways as well as apoptosis-related signaling events. Sorbitol resulted in activation of the extracellular signal-regulated kinase (ERK), p54 c-Jun N-terminal kinase (JNK), and protein kinase B. Furthermore, sorbitol treatment resulting in induction and activation of aldose reductase, decreased expression of the antiapoptotic protein Bcl-xL, increased DNA fragmentation, and glutathione depletion. Apoptosis was attenuated by aldose reductase inhibition with zopolrestat and also by glutathione replenishment with N-acetylcysteine. In conclusion, our data show that hypertonic shrinkage of cardiac myocytes alone is not sufficient to induce cardiac myocyte apoptosis. Hyperosmolarity-induced cell death is sensitive to the nature of the osmolyte and requires induction of aldose reductase as well as a decrease in intracellular glutathione levels.  相似文献   

14.
Abstract: The effect of long-term (2 weeks) exposure to 0–50 m M glucose and 0–1 m M sorbitol on myo -inositol metabolism was studied in cultured rat Schwann cells. Experiments were carried out to determine the effect of sorbinil and ascorbic acid on myo -inositol uptake in rat Schwann cells cultured in the presence of increased extracellular glucose or sorbitol. myo -Inositol uptake and its incorporation into phospholipids decreased significantly when cells were grown in ≥30 m M glucose for a period of 2 weeks. This inhibitory effect was partly blocked by sorbinil, an aldose reductase inhibitor, in a dose-dependent fashion. Significant prevention was achieved with 0.5 and 1 m M sorbinil. Ascorbic acid also prevented the reduction in myo -inositol uptake due to excess extracellular glucose, at 3 and 30 µ M concentrations, but not at 300 µ M . Neither sorbinil nor ascorbic acid could prevent the alterations in myo -inositol transport in cells exposed to high sorbitol levels for the same period of time. These data suggest that glucose-induced alteration of myo -inositol transport in Schwann cells is mediated, at least in part, via sorbitol accumulation. This myo -inositol transport impairment is prevented by sorbinil and also by ascorbic acid. Ascorbic acid may hold a fresh promise for the treatment/prevention of diabetic neuropathy/complications, at least as an adjunct therapy along with known aldose reductase inhibitors.  相似文献   

15.
Our previous studies demonstrated that acetylated tubulin forms a complex with Na(+),K(+)-ATPase and thereby inhibits its enzyme activity in cultured COS and CAD cells. The enzyme activity was restored by treatment of cells with l-glutamate, which caused dissociation of the acetylated tubulin/Na(+),K(+)-ATPase complex. Addition of glucose, but not elimination of glutamate, led to re-formation of the complex and inhibition of the Na(+),K(+)-ATPase activity. The purpose of the present study was to elucidate the mechanism underlying this effect of glucose. We found that exposure of cells to high glucose concentrations induced: (a) microtubule formation; (b) activation of aldose reductase by the microtubules; (c) association of tubulin with membrane; (d) formation of the acetylated tubulin/Na(+),K(+)-ATPase complex and consequent inhibition of enzyme activity. Exposure of cells to sorbitol caused similar effects. Studies on erythrocytes from diabetic patients and on tissues containing insulin-insensitive glucose transporters gave similar results. Na(+),K(+)-ATPase activity was >50% lower and membrane-associated tubulin content was >200% higher in erythrocyte membranes from diabetic patients as compared with normal subjects. Immunoprecipitation analysis showed that acetylated tubulin was a constituent of a complex with Na(+),K(+)-ATPase in erythrocyte membranes from diabetic patients. Based on these findings, we propose a mechanism whereby glucose triggers a synergistic effect of tubulin and sorbitol, leading to activation of aldose reductase, microtubule formation, and consequent Na(+),K(+)-ATPase inhibition.  相似文献   

16.
The production of polyols in vitro by highly purified aldose reductase (EC 1.1.1.21) was monitored by g.l.c. In the presence of NADPH aldose reductase reduced glucose, galactose and xylose to the respective polyols sorbitol, galactitol and xylitol. The rates of formation of these polyols closely mirrored the Km values for the substrates obtained from kinetic measurements that monitored the rate of disappearance of NADPH. No polyol production occurred in the absence of purified aldose of purified aldose reductase, and analysis by g.l.c. revealed only the presence of unchanged monosaccharides. Addition of the aldose reductase inhibitor sorbinil to purified rat lens aldose reductase incubated with xylose in the presence of NADPH resulted in decreased xylitol production. However, aldose reductase inhibitors produced no effect in altering the rate of Nitro Blue Tetrazolium formation from either glucose or xylose, indicating that the observed inhibition in vitro does not result from a free-radical-scavenger effect.  相似文献   

17.
(2-benzyl-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole-8-yl)-acetic acid (compound 1), a novel aldose reductase inhibitor, was assayed for efficacy and selectivity to inhibit rat lens aldose reductase under in vitro conditions by using enzyme preparations obtained from diabetic animals. The inhibitory efficiency was characterized by IC(50) in micromolar region. Enzyme kinetics analysis revealed uncompetitive type of inhibition, both in relation to the D,L-glyceraldehyde substrate and to the NADPH cofactor. In testing for selectivity, comparisons to rat kidney aldehyde reductase, an enzyme with the highest homology to aldose reductase, was used. The inhibition selectivity of the compound tested was characterized by selectivity factor around 20 and was even slightly improved under conditions of prolonged experimental diabetes. These findings were identical with those in the control rats. To conclude, the inhibitory mode, efficacy and selectivity of compound 1, a novel aldose reductase inhibitor, was preserved even under the conditions of prolonged STZ-induced experimental diabetes of rats.  相似文献   

18.
During the epididymal transit, male gametes acquire new surface proteins necessary for their fertilizing ability. We have previously shown that membranous vesicles, called epididymosomes, interact with sperm surface within the epididymal fluid allowing transfer of some proteins to different subcellular compartments of spermatozoa. We previously showed that one of the major proteins associated with epididymosomes was an aldose reductase (gene: AKR1B5) and confirmed that aldose reductase is located in the epithelial cells bordering the intraluminal compartment of the epididymis. The present study shows that cytosolic aldose reductase activity was maximal in the proximal and middle segments of the epididymis and decreased in the distal epididymis. Western and Northern blot analysis confirmed the distribution pattern of aldose reductase and of the encoding mRNA. The optimal pH of epididymal aldose reductase was 6.0-6.5 when glucose was used as a substrate; this corresponds to the pH of the intraluminal epididymal fluid. In order to evaluate the possible involvement of sorbitol in sperm physiology, Western blot of tissue homogenates were probed with an anti-sorbitol dehydrogenase antibody. The amount of enzyme immunodetected was higher in the proximal and distal segments of the epididymis when compared to the amount detectable in the middle segment of the epididymis. Sorbitol dehydrogenase activity as well as the level of the encoding mRNA showed the same pattern of distribution. Furthermore, immunohistological studies using the anti-sorbitol dehydrogenase revealed that this enzyme was synthesized by the epididymal epithelial cells bordering the intraluminal compartment. Knowing the importance of sorbitol and fructose in sperm metabolism, we hypothesized that the polyol pathway is involved in the modulation of sperm motility within the epididymis.  相似文献   

19.
The effects of aldose reductase inhibitors (ARIs) on the synthesis of prostacyclin (PGI2) by aortic rings from diabetic rats were examined. The ARIs studied were ONO-2235 and isoliquiritigenin, a new compound extracted from glycyrrhizae radix. The content of sorbitol in the sciatic nerve of diabetic rats induced by streptozotocin was significantly increased as compared with that of controls. This increase was significantly inhibited by the administration of an ARI. On the other hand, there was a marked decrease in the synthesis of PGI2 by the diabetic rats compared with the control rats. The decrease in PGI2 synthesis was significantly reversed by the administration of an ARI. Furthermore, the synthesis of PGI2 by the aortic rings was inversely correlated with the content of sorbitol in sciatic nerves. Those observations suggest that an ARI may have a beneficial effect on the vascular synthesis of PGI2 in diabetes mellitus.  相似文献   

20.
Renal medullary cells are normally exposed to high extracellular NaCl as part of the urinary concentrating mechanism. They react to this stress by accumulating sorbitol and other organic osmolytes. PAP-HT25, a line of epithelial cells derived from rabbit renal inner medulla, expresses this response. In hypertonic medium, these cells accumulate large amounts of sorbitol. There is a large increase in the amount of aldose reductase, which catalyzes production of sorbitol from glucose. The purpose of the present study was to investigate whether the aldose reductase protein increases because of faster synthesis or slower degradation. We measured the rate of synthesis and degradation of aldose reductase protein by pulse-chase with [35S]methionine, followed by immunoprecipitation with specific antiserum and autoradiography. The protein synthesis rate was 6 times greater in cells grown in hypertonic (500 mosmol/kg) medium, than in those grown in normal (300 mosmol/kg) medium. When control cells were switched to hypertonic medium, the synthesis rate increased 15-fold by 24 h, then decreased to 11-fold after 48 h. In contrast, synthesis rate continued to increase past 24 h when accumulation of sorbitol was prevented by inhibiting aldose reductase activity with Tolrestat. Thus, there is a feedback mechanism by which cellular sorbitol accumulation inhibits aldose reductase protein synthesis. Degradation of aldose reductase protein was slow (only about 25% in 3 days) and was not affected by osmolality. Thus, the osmoregulatory increase in aldose reductase protein is due to an increase in its synthesis rate and not to any change in its degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号