首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thermosensitive poly(N-isopropylacrylamide)-based polymer particles were synthesised, and screened for the adsorption of human immunoglobulin G (hIgG). At pH 9 the adsorption on microgel particles was strongly affected by temperature, approximately 40 mg hIgG/g support (90% of initial hIgG) being adsorbed at 40°C but only 10% of initial hIgG at 25°C. At pH 5 the maximum adsorbed amount (20 mg hIgG/g support) was similar for both temperatures. The adsorption of hIgG on to charged poly(methyl methacrylate)/poly(N-isopropylacrylamide) core-shell latexes was negligible (5–10 mg hIgG/g support) at the same temperature and pH conditions. The lower adsorption of hIgG onto the core-shell particles is explained by steric interactions due to the small size of the shell.  相似文献   

2.
The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.  相似文献   

3.
Halder E  Chattoraj DK  Das KP 《Biopolymers》2005,77(5):286-295
The extent of adsorption (Gamma2(1)) of bovine serum albumin (BSA), beta-lactoglobulin, lysozyme, gelatin, and DNA from aqueous solution onto the hydrophilic surface of cellulose has been measured as function of biopolymer concentration at different temperatures, pHs, and ionic strengths, and in the presence of a high concentration of inorganic salts and denaturants. In all cases, the value of Gamma2(1) increases with the increase of biopolymer concentration (X2) in bulk and it attains a maximum value at a critical mole fraction concentration X2m. The value of Gamma2m depends upon the nature of protein, temperature, pH, and ionic strength, as well as the nature of neutral salts present in excess. Gamma2m for proteins at a fixed physicochemical condition stands in the following order: Gelatin>betalactoglobulin>lysozyme>BSA. The isotherms for adsorption of DNA nucleotides on cellulose surface at pH 4.0 have been compared at different temperatures and ionic strengths, and in the presence of high concentration of inorganic salts LiCl, NaCl, KCl, and Na2SO4. Values of Gamma2m for different systems have been evaluated and critically compared. At pH 6.0 and 8.0, Gamma2(1) values of DNA nucleotides on cellulose are all negative due to the excess positive hydration of cellulose. At pH 4.0, adsorption of nucleotides of acid, alkali, and heat-denatured DNA widely differ from each other and in the presence of excess concentration of urea becomes negative. The probable mechanisms of biopolymer-cellulose adsorption in terms of polymer hydration, steric interaction, London-van der Waals, hydrophobic, and other types of interactions have been discussed qualitatively. The standard free energy change for the adsorption of protein and DNA nucleotides on the cellulose surface at the state of adsorption saturation has been calculated in kJ per kg of cellulose using an integrated form of the Gibbs adsorption equation. The relation between DeltaG degrees and maximum affinities between biopolymers and the polysaccharide interface have been discussed for various systems.  相似文献   

4.
Wang Y  Wang X  Luo G  Dai Y 《Bioresource technology》2008,99(9):3881-3884
The adsorption characteristics of BSA onto the magnetic chitosan nanoparticles have been investigated in this paper. The magnetic chitosan nanoparticles were prepared by adding the basic precipitant of NaOH solution into a W/O microemulsion system. The morphology of magnetic chitosan nanoparticles was observed by transmission electron microscope (TEM). It was found that the diameter of magnetic chitosan nanoparticles was from 10nm to 20 nm, and the nanoparticles suspending in the aqueous solution could easily aggregate by a magnet, which suggested that the nanoparticles had good magnetic characteristics. The BSA adsorption experiment indicated that when pH of BSA solution was equal to 4, the maximum adsorption loading reached 110 mg/g. Through measuring the zeta potential of BSA solution and the magnetic nanoparticles, it was found that under this situation the surface of BSA took the negative charge, but the magnetic nanoparticles took the positive charge. Due to the small diameter, the adsorption equilibrium of BSA onto the nanoparticles reached very quickly within 10 min. The adsorption equilibrium of BSA onto the magnetic chitosan nanoparticles fitted well with the Freundlich model. The experimental results showed that the magnetic chitosan nanoparticles have potential to be used for the quick pretreatment in the protein analysis process.  相似文献   

5.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

6.
Extent of adsorption of proteins at alumina-water interface from solutions containing binary mixture of beta-lactoglobulin and bovine serum albumin (BSA), beta-lactoglobulin and gelatin, and gelatin and bovine serum albumin has been estimated as functions of protein concentrations at varying pH, ionic strength, temperature and weight fraction ratios of protein mixture. The extent of adsorption (gamma lacw) of lactoglobulin in the presence of BSA increases with increase of protein concentration (Clac) until it reaches a maximum but a fixed value gamma lacw(m). Extent of adsorption gamma serw also initially increases with increase of protein concentrations until it reaches maximum value gamma serw(m). Beyond these protein concentrations, adsorbed BSA is gradually desorbed due to the preferential adsorption of lactoglobulin from the protein mixture. In many systems, gamma serw at high protein concentrations even becomes negative due to the strong competition of BSA and water for binding to the surface sites in the presence of lactoglobulin. For lactoglobulin-gelatin mixtures, adsorption of both proteins is enhanced as protein concentration is increased until limiting values for adsorption are reached. Beyond the limiting value, lactoglobulin is further accumulated at the interface without limit when protein concentration is high. For gelatin-albumin mixtures, extent of gelatin adsorption increases with increase in the adsorption of BSA. The limit for saturation of adsorption for gelatin is not reached for many systems. At acid pH, adsorbed BSA appears to be desorbed from the surface in the presence of gelatin. From the results thus obtained the role of electrostatic and hydrophobic effects in controlling the adsorption process has been analysed.  相似文献   

7.
In this study, we developed composite chitosan beads combining various metal ions, including Ni(2+), Cu(2+), Zn(2+), and Fe(2+), for direct adsorption of enterovirus 71 (EV71). The metal-ion species had significant effects on the adsorption capacity of beads. Among these metal ion-composite chitosan beads, Ni(2+)-chitosan beads exhibited the best adsorption capacity of EV71. Using a concentration of 0.01-M Ni(2+) was found to best provide for bead formation and EV71 adsorption. The adsorption of EV71 for Ni(2+)-chitosan beads at neutral or alkaline pH was favored. Under a competitive condition with albumin proteins, Ni(2+)-chitosan beads exhibited significant capacity of EV71 adsorption in culture media. The adsorption of EV71 on the Ni(2+)-chitosan beads was attributed to the strong binding between Ni(2+) ions chelated to the surface amino acid of EV71 capsids and Ni(2+) ions chelated on the chitosan materials. Moreover, the adsorbed EV71 retained its antigenicity and infectivity after desorption. The Ni(2+)-chitosan beads exhibit a promising application to EV71 adsorption and removal.  相似文献   

8.
ADSORPTION OF FULVIC ACID ON ALGAL SURFACES AND ITS EFFECT ON CARBON UPTAKE   总被引:1,自引:0,他引:1  
Adsorption of Suwannee River fulvic acid (SRFA) to algal surfaces of three green algae was studied at environmentally relevant pH values (4 –7) and SRFA concentrations (5–100 mg·L 1). The influence of adsorbed SRFA on carbon uptake of Scenedesmus subspicatus Chodat was also examined. Although no adsorption was observed at neutral pH values (pH 6 and 7), at pH 4 up to 31 mg SRFA·m 2 and at pH 5 up to 4 mg SRFA·m 2 was adsorbed to the algal surfaces. Electrophoretic mobility measurements of S. subspicatus demonstrated an increase in the negative surface charge of the alga in the presence of SRFA at pH 4. The adsorbed SRFA also influenced 14C uptake in S. subspicatus; in this case, enhanced carbon uptake could be related to the amount of adsorbed SRFA. The binding of humic substances by algal surfaces was interpreted as the result of hydrogen bonding and hydrophobic interactions.  相似文献   

9.
Removal of phthalate esters by alpha-cyclodextrin-linked chitosan bead   总被引:1,自引:0,他引:1  
Removal of phthalate esters (PAEs) by alpha-cyclodextrin (CD)-linked chitosan bead in aqueous solution was studied. Results of kinetic experiments indicated that diheptyl phthalate (DHpP) was adsorbed most efficiently (3.21 mg/g) among the six PAEs. DHpP recovery was 94.6% from alpha-CD-linked chitosan bead by shaking both with a mixture of methanol and water (v/v = 8/2). The recovered alpha-CD chitosan bead was reusable as an adsorbent 20 times in the batch tests. The adsorbed PAE by alpha-CD-linked chitosan bead decreased as temperature increased. However, coexisting pH, NaCl, and Ca2+ did not affect adsorption efficiency. It was concluded that the application of low cost alpha-CD-linked chitosan bead could have the potential to effectively remove PAEs from different aquatic environments.  相似文献   

10.
Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25 degrees C as compared to 5, 15, and 40 degrees C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400 degrees C for 1 h and 600 degrees C for 3 h in N(2) increased ethanol adsorptivity and heating to 1000 degrees C (1 h) in CO(2) decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 L aqueous ethanol/min increased the adsorption rate.  相似文献   

11.
This paper presents the adsorption of humic acid from aqueous solution onto crosslinked chitosan derivative (carboxymethylchitosan), formed by additionless irradiation technique. The surface charge and swelling properties of crosslinked samples were investigated. The adsorption of humic acid onto crosslinked carboxymethylchitosan was carried out by the batch method at room temperature, and it was found to be strongly pH-dependent. Maximum amount of humic acid was adsorbed under acidic conditions at the optimum pH value of 3.5. Adsorption kinetic studies indicated the adsorption process was transport-limited at the same pH. The adsorption isotherm analysis data under various initial humic acid concentrations confirms that experimental data fitted well into the Langmuir equation. X-ray photoelectron spectroscopy (XPS) revealed that the amino groups of carboxymethylated chitosan were protonated, suggesting the formation of organic complex between the protonated amino groups and humic acid. From these preliminary evaluations, it was concluded that crosslinked carboxymethylated chitosan derivatives have a great potential in water treatment for the removal of humic acid and other polarized or electrically charged species.  相似文献   

12.
原位椭圆偏振术研究牛血清清蛋白在固/液界面的吸附   总被引:1,自引:0,他引:1  
用原位椭圆偏振术系统研究了硅片表面因素及缓冲液环境因素对牛血清清蛋白在固/液界面吸附的影响。在生理条件下,疏水表面与亲水表面相比BSA吸附量较大。随着硅片表面电荷密度增加,BSA吸附量增加。BSA吸附量当体溶液pH值等于BSA等电点时达到最大。而随着体溶液离子强度增加,BSA吸附量亦上升。实验结果提示:除了熵驱动作用之外,硅片表面与BSA分子及BSA分子之间的静电作用在BSA吸附中起着十分重要的作用。  相似文献   

13.
Liu M  Huang J  Deng Y 《Bioresource technology》2007,98(5):1144-1148
An investigation was conducted regarding the adsorption and desorption of L-arginine from aqueous solutions with a new spherical cellulose adsorbent containing the sulfonic group. The adsorption of L-arginine on the adsorbent was time, pH, initial concentration of L-arginine and temperature dependent. The adsorption process followed the Langmuir adsorption isotherm, and was endothermic (DeltaH =24.66 KJ/mol). Almost 100% L-arginine adsorbed on the adsorbent could be recovered with a 2.0 mol/L NH4OH or 2.0 mol/L NH4Cl aqueous solution. After 25 and 40 cycles of adsorption and desorption, the decrease in adsorption capacity reached to 4.9% and 20.3%, respectively.  相似文献   

14.
The generation of layer-by-layer silicate-chitosan composite biosorbent was studied. The films were evaluated on its stability regarding the polymer leakage and its capability in the removal of Cd(II), Cr(III) and Cr(VI) from an aqueous solution. SEM, EDAX and ATR-IR techniques were applied for material characterization. Silicate-chitosan films with a final layer of silicate demonstrated chitosan retention and had better sorption capacities than those without it. For metal species, such as Cd(II) and Cr(III), the greatest adsorption was obtained when the pH of the solution was 7. When Cr(VI) was evaluated, pH 4 was the optimal for its adsorption. Langmuir and Freundlich isotherms were modeled for the equilibrium data. An 80% of the adsorbed metal was recovered by HNO(3) incubation. This non-covalent immobilization method allowed chitosan surface retention and did not affect its adsorption properties. The use of a coated surface would facilitate sorbent removal from medium after adsorption.  相似文献   

15.
The xylanase, BadX, from the alkalophilic Bacillus agaradhaerens was cloned, expressed and studied in comparison to a related family 11 xylanase, BcX, from B. circulans. Despite the alkaline versus neutral conditions under which these bacteria grow, BadX and BcX both exhibit optimal activity near pH 5.6 using the substrate o-nitrophenyl beta-xylobioside. Analysis of the bell-shaped activity profile of BadX yielded apparent pK(a) values of 4.2 and 7.1, assignable to its nucleophile Glu94 and general acid Glu184, respectively. In addition to having an approximately 10-fold higher k(cat)/K(m) value with this substrate at pH 6 and 40 degrees C, BadX has significantly higher thermal stability than BcX under neutral and alkaline conditions. This enhanced stability, rather than a shift in its pH-optimum, may allow BadX to hydrolyze xylan under conditions of elevated temperature and pH.  相似文献   

16.
Lee H  Jeong Y  Park TG 《Biomacromolecules》2007,8(12):3705-3711
Shell cross-linked hollow polyelectrolyte microcapsules composed of hyaluronic acid (HA) and poly- l-lysine (PLL) were prepared by layer-by-layer (LBL) adsorption and subsequent core removal by a reductive agent. Disulfide cross-linked HA microgels were used as template core materials for the LBL deposition on the surface and removed by treatment of dithiothreitol at neutral pH condition. HA/PLL polyelectrolyte multilayers on the shell were chemically cross-linked via carbodiimide chemistry, and their physicochemical properties and drug release behaviors were investigated. Shell cross-linked HA/PLL polyelectrolyte microcapsules exhibited far enhanced physical stability against freeze-thaw cycles and acidic pH conditions compared to the un-cross-linked ones. The cross-linked HA/PLL multilayer shell also demonstrated pH responsive permeability, which became more permeable at low pH than at neutral pH. When bovine serum albumin (BSA), as a model protein drug, was loaded inside using the pH-dependent permeability, BSA release profiles from the microcapsules could be readily modulated by varying medium pH values or adding an HA digesting enzyme (hyaluronidase) in the incubation medium.  相似文献   

17.
Chitosan/cellulose-based beads (CCBs) for the affinity purification of histidine-tagged proteins were prepared from chitosan/cellulose dissolved in ionic liquid as a solvent, and their structures were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The affinity purification was used to separate hexahistidine-tagged (his-tagged) enhanced green fluorescent protein (EGFP) from Escherichia coli. The results showed that Zn2+–CCB exhibited more specific adsorption capacity toward the target protein compared with Ni2+–CCB and Cu2+–CCB. The maximum adsorption of EGFP was 1.84?mg/g of Zn2+–CCB, with 90% purity under the optimized conditions (ionic strength (1.0?M NaCl), pH (7.2) and imidazole concentration (500?mM)). In addition, a regeneration method for the sorbent was further developed by washing with ethylenediaminetetraacetic acid disodium and then reimmobilizing with metal ions. This technique is an alternative method for the purification of his-tagged proteins, making the process more economical, fast, stable, and large batch.  相似文献   

18.
The production, characterization and anti-biofouling activity of 3D porous scaffolds combining different blends of chitosan and oxazoline-based antimicrobial oligomers is reported. The incorporation of ammonium quaternized oligo(2-oxazoline)s into the composition of the scaffold enhances the stability of the chitosan scaffold under physiological conditions as well as its ability to repel protein adsorption. The blended scaffolds showed mean pore sizes in the range of 18–32?μm, a good pore interconnectivity and high porosity, as well as a large surface area, ultimate key features for anti-biofouling applications. Bovine serum albumin (BSA) adhesion profiles showed that the composition of the scaffolds plays a critical role in the chitosan–oligooxazoline system. Oligobisoxazoline-enriched scaffolds (20%?w/w, CB8020) decreased protein adsorption (BSA) by up to 70%. Moreover, 1?mg of CB8020 was able to kill 99.9% of Escherichia coli cells upon contact, demonstrating its potential as promising material for production of tailored non-fouling 3D structures to be used in the construction of novel devices with applications in the biomedical field and water treatment processes.  相似文献   

19.
Adsorption mechanism of cadmium on juniper bark and wood   总被引:4,自引:0,他引:4  
In this study the capacity of sorbents prepared from juniper wood (JW) and bark (JB) to adsorb cadmium (Cd) from aqueous solutions at different pH values was compared. Adsorption behavior was characterized through adsorption kinetics, adsorption isotherms, and adsorption edge experiments. Results from kinetics and isotherm experiments showed that JB (76.3-91.6 micromol Cdg(-1) substrate) had 3-4 times higher adsorption capacity for Cd than JW (24.8-28.3 micromol Cdg(-1)). In addition to higher capacity, JB exhibited a higher strength of adsorption (45.3 versus 9.1 Lmmol(-1)) and faster uptake kinetics (0.0119 versus 0.0083 g micromol(-1)min(-1)) compared to JW. For both these adsorbents, increasing Cd adsorption with increasing solution pH in the range of 2-6 suggests that surface carboxyl groups (RCOOH) might be involved in interaction with Cd. Diffuse reflectance infrared Fourier transform (DRIFT) spectra showed that the surface concentration of carboxyl groups was higher on JB compared to JW. The ratio of Ca released to Cd adsorbed was 1.04 and 0.78 for JB and JW, respectively, indicating that Ca-Cd ion-exchange was the primary mechanism involved. The higher Ca content in JB (15 times more) and the surface RCOOH concentration (2.5 times more) can be attributed to the observed differences in Cd adsorption behavior between the two lignocellulosic adsorbents.  相似文献   

20.
Simultaneous adsorption of bovine serum albumin (BSA), beta-lactoglobulin and gelatin from aqueous solutions of their ternary mixture to the alumina-water interface has been studied as a function of protein concentration at different values of pH, ionic strength, temperature and weight fraction ratios of proteins. At a fixed weight fraction of beta-lactoglobulin, preferential adsorption (gamma w(lac)) of this protein significantly depends on the amounts of BSA and gelatin present in the solution before adsorption. At higher ranges of protein concentrations, extent of adsorption (gamma w(ser)) of BSA decreases sharply with increase of gamma w(lac) until gamma w(ser) becomes significantly negative, thereby indicating that beta-lactoglobulin and water preferentially adsorbed at the interface are responsible for complete displacement of BSA from the surface. On the other hand, adsorption (gamma w(gel)) of gelatin under similar situation increases mutually with increase in the values of gamma w(lac) in many systems. In few systems, gamma w(gel) also decreases with increase of gamma w(lac) depending upon solution parameters. At pH 5.2, increase of ionic strength and temperature, respectively, increases the extent of adsorption of each protein in the mixture considerably. Extents of adsorption of all proteins are observed to increase when pH is changed from 5.2 to 6.4. The affinities of different proteins in the mixture are expressed in unified scales either in terms of maximum extents of total adsorption or in terms of standard free energies of adsorption of protein mixtures with respect to surface saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号