首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bread wheat (Triticum aestivum) is one of the most important crops worldwide. However, because of its large, hexaploid, highly repetitive genome it is a challenge to develop efficient means for molecular analysis and genetic improvement in wheat. To better understand the composition and molecular evolution of the hexaploid wheat homoeologous genomes and to evaluate the potential of BAC-end sequences (BES) for marker development, we have followed a chromosome-specific strategy and generated 11 Mb of random BES from chromosome 3B, the largest chromosome of bread wheat. The sequence consisted of about 86% of repetitive elements, 1.2% of coding regions, and 13% remained unknown. With 1.2% of the sequence length corresponding to coding sequences, 6000 genes were estimated for chromosome 3B. New repetitive sequences were identified, including a Triticineae-specific tandem repeat (Fat) that represents 0.6% of the B-genome and has been differentially amplified in the homoeologous genomes before polyploidization. About 10% of the BES contained junctions between nested transposable elements that were used to develop chromosome-specific markers for physical and genetic mapping. Finally, sequence comparison with 2.9 Mb of random sequences from the D-genome of Aegilops tauschii suggested that the larger size of the B-genome is due to a higher content in repetitive elements. It also indicated which families of transposable elements are mostly responsible for differential expansion of the homoeologous wheat genomes during evolution. Our data demonstrate that BAC-end sequencing from flow-sorted chromosomes is a powerful tool for analysing the structure and evolution of polyploid and highly repetitive genomes.  相似文献   

2.

Background  

The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase) level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features.  相似文献   

3.
A cytogenetically based physical map of chromosome 1B in common wheat.   总被引:11,自引:0,他引:11  
R S Kota  K S Gill  B S Gill  T R Endo 《Génome》1993,36(3):548-554
We have constructed a cytogenetically based physical map of chromosome 1B in common wheat by utilizing a total of 18 homozygous deletion stocks. It was possible to divide chromosome 1B into 17 subregions. Nineteen genetic markers are physically mapped to nine subregions of chromosome 1B. Comparison of the cytological map of chromosome 1B with an RFLP-based genetic linkage map of Triticum tauschii revealed that the linear order of the genetic markers was maintained between chromosome 1B of hexaploid wheat and 1D of T. tauschii. Striking differences were observed between the physical and genetic maps in relation to the relative distances between the genetic markers. The genetic markers clustered in the middle of the genetic map were physically located in the distal regions of both arms of chromosome 1B. It is unclear whether the increased recombination in the distal regions of chromosome 1B is due to specific regions of increased recombination or a more broadly distributed increase in recombination in the distal regions of Triticeae chromosomes.  相似文献   

4.
《BMC genomics》2015,16(1)

Background

A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat.

Results

We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91 % of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87 % of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B.

Conclusions

We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1803-y) contains supplementary material, which is available to authorized users.  相似文献   

5.
Molecular Biology Reports - Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat improvement. Development and deployment of...  相似文献   

6.
The complex hexaploid wheat genome offers many challenges for genomics research. Expressed sequence tags facilitate the analysis of gene-coding regions and provide a rich source of molecular markers for mapping and comparison with model organisms. The objectives of this study were to construct a high-density EST chromosome bin map of wheat homoeologous group 2 chromosomes to determine the distribution of ESTs, construct a consensus map of group 2 ESTs, investigate synteny, examine patterns of duplication, and assess the colinearity with rice of ESTs assigned to the group 2 consensus bin map. A total of 2600 loci generated from 1110 ESTs were mapped to group 2 chromosomes by Southern hybridization onto wheat aneuploid chromosome and deletion stocks. A consensus map was constructed of 552 ESTs mapping to more than one group 2 chromosome. Regions of high gene density in distal bins and low gene density in proximal bins were found. Two interstitial gene-rich islands flanked by relatively gene-poor regions on both the short and long arms and having good synteny with rice were discovered. The map locations of two ESTs indicated the possible presence of a small pericentric inversion on chromosome 2B. Wheat chromosome group 2 was shown to share syntenous blocks with rice chromosomes 4 and 7.  相似文献   

7.
8.

Background  

Mutational inactivation of plant genes is an essential tool in gene function studies. Plants with inactivated or deleted genes may also be exploited for crop improvement if such mutations/deletions produce a desirable agronomical and/or quality phenotype. However, the use of mutational gene inactivation/deletion has been impeded in polyploid plant species by genetic redundancy, as polyploids contain multiple copies of the same genes (homoeologous genes) encoded by each of the ancestral genomes. Similar to many other crop plants, bread wheat (Triticum aestivum L.) is polyploid; specifically allohexaploid possessing three progenitor genomes designated as 'A', 'B', and 'D'. Recently modified TILLING protocols have been developed specifically for mutation detection in wheat. Whilst extremely powerful in detecting single nucleotide changes and small deletions, these methods are not suitable for detecting whole gene deletions. Therefore, high-throughput methods for screening of candidate homoeologous gene deletions are needed for application to wheat populations generated by the use of certain mutagenic agents (e.g. heavy ion irradiation) that frequently generate whole-gene deletions.  相似文献   

9.
Natural variation in wheat requirement of long exposures to cold temperatures to accelerate flowering (vernalization) is mainly controlled by the Vrn-1, Vrn-2, Vrn-3, and Vrn-4 loci. The first three loci have been well characterized, but limited information is available for Vrn-4. So far, natural variation for Vrn-4 has been detected only in the D genome (Vrn-D4), and genetic stocks for this gene are available in Triple Dirk (TDF, hereafter). We detected heterogeneity in the Vrn-1 alleles present in different TDF stocks, which may explain inconsistencies among previous studies. A correct TDF seed stock from Japan carrying recessive vrn-A1, vrn-B1, and vrn-D1 alleles was crossed with three different winter cultivars to generate F2 mapping populations. Most of the variation in flowering time in these three populations was controlled by a single locus, Vrn-D4, which was mapped within a 1.8 cM interval flanked by markers Xcfd78 and Xbarc205 in the centromeric region of chromosome 5D. A factorial ANOVA for heading time using Vrn-D4 alleles and vernalization as factors showed a significant interaction (P < 0.0001), which confirmed that the Vrn-D4 effect on flowering time is modulated by vernalization. Comparison of the different Triple Dirk stocks revealed that Vrn-B1, Vrn-D1, and Vrn-D4 all have a small residual response to vernalization, but Vrn-D4 differs from the other two in its response to short vernalization periods. The precise mapping and characterization of Vrn-D4 presented here represent a first step toward the positional cloning of this gene.  相似文献   

10.
A high-density consensus map of A and B wheat genomes   总被引:1,自引:0,他引:1  
A durum wheat consensus linkage map was developed by combining segregation data from six mapping populations. All of the crosses were derived from durum wheat cultivars, except for one accession of T. ssp. dicoccoides. The consensus map was composed of 1,898 loci arranged into 27 linkage groups covering all 14 chromosomes. The length of the integrated map and the average marker distance were 3,058.6 and 1.6?cM, respectively. The order of the loci was generally in agreement with respect to the individual maps and with previously published maps. When the consensus map was aligned to the deletion bin map, 493 markers were assigned to specific bins. Segregation distortion was found across many durum wheat chromosomes, with a higher frequency for the B genome. This high-density consensus map allowed the scanning of the genome for chromosomal rearrangements occurring during the wheat evolution. Translocations and inversions that were already known in literature were confirmed, and new putative rearrangements are proposed. The consensus map herein described provides a more complete coverage of the durum wheat genome compared with previously developed maps. It also represents a step forward in durum wheat genomics and an essential tool for further research and studies on evolution of the wheat genome.  相似文献   

11.

Background

The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution.

Results

The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins.

Conclusions

Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1641-y) contains supplementary material, which is available to authorized users.  相似文献   

12.
A genetic and physical map of bovine chromosome 3   总被引:2,自引:0,他引:2  
This paper reports a map of nine polymorphic microsatellite markers previously assigned to bovine chromosome 3 (BTA3) by somatic cell genetics. The linkage group covers 101 cM on the chromosome with an average intermarker distance of 13-9 cM. One marker (INRA200) was isolated from a peak of flow sorted chromosomes 2 and 3. Another marker (INRA197) was derived from a cosmid. The localization of the cosmid by in situ hybridization enabled the orientation of the linkage group on BTA3. Markers were relatively evenly spaced and consequently can be used to complement other mapping data about this chromosome. This establishes a framework of polymorphic markers that can be used to search for quantitative trait loci (QTL).  相似文献   

13.
14.
Agronomically important traits are frequently controlled by rare, genotype‐specific alleles. Such genes can only be mapped in a population derived from the donor genotype. This requires the development of a specific genetic map, which is difficult in wheat because of the low level of polymorphism among elite cultivars. The absence of sufficient polymorphism, the complexity of the hexaploid wheat genome as well as the lack of complete sequence information make the construction of genetic maps with a high density of reproducible and polymorphic markers challenging. We developed a genotype‐specific genetic map of chromosome 3B from winter wheat cultivars Arina and Forno. Chromosome 3B was isolated from the two cultivars and then sequenced to 10‐fold coverage. This resulted in a single‐nucleotide polymorphisms (SNP) database of the complete chromosome. Based on proposed synteny with the Brachypodium model genome and gene annotation, sequences close to coding regions were used for the development of 70 SNP‐based markers. They were mapped on a Arina × Forno Recombinant Inbred Lines population and found to be spread over the complete chromosome 3B. While overall synteny was well maintained, numerous exceptions and inversions of syntenic gene order were identified. Additionally, we found that the majority of recombination events occurred in distal parts of chromosome 3B, particularly in hot‐spot regions. Compared with the earlier map based on SSR and RFLP markers, the number of markers increased fourfold. The approach presented here allows fast development of genotype‐specific polymorphic markers that can be used for mapping and marker‐assisted selection.  相似文献   

15.

Background

The 17 Gb bread wheat genome has massively expanded through the proliferation of transposable elements (TEs) and two recent rounds of polyploidization. The assembly of a 774 Mb reference sequence of wheat chromosome 3B provided us with the opportunity to explore the impact of TEs on the complex wheat genome structure and evolution at a resolution and scale not reached so far.

Results

We develop an automated workflow, CLARI-TE, for TE modeling in complex genomes. We delineate precisely 56,488 intact and 196,391 fragmented TEs along the 3B pseudomolecule, accounting for 85% of the sequence, and reconstruct 30,199 nested insertions. TEs have been mostly silent for the last one million years, and the 3B chromosome has been shaped by a succession of bursts that occurred between 1 to 3 million years ago. Accelerated TE elimination in the high-recombination distal regions is a driving force towards chromosome partitioning. CACTAs overrepresented in the high-recombination distal regions are significantly associated with recently duplicated genes. In addition, we identify 140 CACTA-mediated gene capture events with 17 genes potentially created by exon shuffling and show that 19 captured genes are transcribed and under selection pressure, suggesting the important role of CACTAs in the recent wheat adaptation.

Conclusion

Accurate TE modeling uncovers the dynamics of TEs in a highly complex and polyploid genome. It provides novel insights into chromosome partitioning and highlights the role of CACTA transposons in the high level of gene duplication in wheat.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0546-4) contains supplementary material, which is available to authorized users.  相似文献   

16.
Polyphenol oxidase (PPO) is a major cause of time-dependent darkening and discoloration in Asian noodles and other wheat-based products. One of the best ways to reduce this undesirable darkening is to breed new wheat cultivars with low PPO activity using efficient and reliable markers. Based on the sequence of a PPO gene SSPPO-B1 (GenBank accession no. AB254804) located on chromosome 2B of common wheat, 26 pairs of primers were designed to detect polymorphisms between wheat cultivars with low and high PPO activity. F-8, one of these primer pairs, amplified double fragments (band ??a?? of approximately 400?bp and band ??b?? of approximately 600?bp) in the cultivars with low PPO activity, and a single fragment (only band a) in the cultivars with high PPO activity. The differences between the fragments a and b include five indels and several single nucleotide polymorphisms, which occurred in intron II of the PPO gene. F-8 can be used as a sequence-tagged site marker to discriminate between two alleles Ppo-B1a (GQ303713) and Ppo-B1b (AB254804). The screening of 284 accessions of the core collection of Chinese wheat germplasms using the marker F-8 showed that the double fragments were present in 188 accessions, and the single fragments were present in the remaining 96 accessions. Statistical analysis revealed that the cultivars with the double fragments had significantly lower mean PPO activity than those with the single fragments. We also screened the 284 accessions using two additional markers, PPO18 for Ppo-A1 on chromosome 2A and STS01 for Ppo-D1 on chromosome 2D. Results showed that the combination of markers F-8, PPO18, and STS01 could reliably predict PPO activity. These markers can be used in wheat breeding programs for low PPO activity selection to improve the quality of wheat-based products.  相似文献   

17.
Wheat vernalization requirement is mainly controlled by the VRN1, VRN2, VRN3, and VRN4 genes. The first three have been cloned and have homoeologs in all three genomes. VRN4 has been found only in the D genome (VRN-D4) and has not been cloned. We constructed a high-density genetic map of the VRN-D4 region and mapped VRN-D4 within a 0.09 cM interval in the centromeric region of chromosome 5D. Using telocentric 5D chromosomes generated from the VRN-D4 donor Triple Dirk F, we determined that VRN-D4 is located on the short arm. The VRN-D4 candidate region is colinear with a 2.24 Mb region on Brachypodium distachyon chromosome 4, which includes 127 predicted genes. Ten of these genes have predicted roles in development but we detected no functional polymorphisms associated to VRN-D4. Two recombination events separated VRN-D4 from TaVIL-D1, the wheat homolog of Arabidopsis vernalization gene VIL1, confirming that this gene is not a candidate for VRN-D4. We detected significant interactions between VRN-D4 and other four genes controlling vernalization requirement (Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3), which confirmed that VRN-D4 is part of the vernalization pathway and that it is either upstream or is part of the regulatory feedback loop involving VRN1, VRN2 and VRN3 genes. The precise mapping of VRN-D4 and the characterization of its interactions with other vernalization genes provide valuable information for the utilization of VRN-D4 in wheat improvement and for our current efforts to clone this vernalization gene.  相似文献   

18.
Genome of A. tumefaciens contains a linear and a circular chromosome. As an initial step of elucidating the structural and functional genomics of this bacterium, linkage map of the left region of its linear chromosome was constructed. Total genomic libraries of A. tumefaciens MAFF301001 were constructed in BAC vectors namely, pFOS1 and pBeloBAC11. Upon construction of sub-libraries, minimum overlapping clones needed to cover the left region was determined. So far, four contigs have been assembled with a total of 19 overlapping clones. Detailed EcoRI physical map of contig III was constructed and it covers a 110 kb region of the Pme5 fragment of the linear chromosome. Seven end regions of the linking clones were partially sequenced but no gene existence was determined due to low homology.  相似文献   

19.
20.
Summary We have generated a restriction map around the cloned genes for human apolipoproteins CI, CII, and E by pulsed-field gel analysis. We show that the genes are clustered within an area of about 50 kb on chromosome 19. The genes are all oriented in the same direction, head to tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号