首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent discovery of two proteasome homologous genes,LMP2 andLMP7, in the class II region of the human MHC, has implicated this multi-subunit protease in an early step of the immune response; the degradation of intracellular and viral proteins. Short peptides produced by the proteasome are transported into the ER by the product of another set of MHC class II genes,TAP1 andTAP2, where they bind and stabilise HLA class I molecules. Antigenic peptides displayed at the cell surface by HLA class I molecules mark cells for destruction by cytotoxic T lymphocytes. The role of the proteasome in antigen processing was questioned when mutant cells, which lack theLMP genes, were able to process and present antigens normally. The discovery that two proteasome -subunits, delta andMB1, highly homologous toLMP2 andLMP7 and expressed in reciprocal manner, is now consistent with a role for the proteasome in antigen processing. The incorporation of different -subunits into the proteasome may be a mechanism to modulate catalytic activity of the proteasome complex, allowing production of peptides that are more suitable to enter into the ER by the TAP transporters and to bind HLA class I molecules. But, in the absence of the LMPs, the other subunits permit processing of most antigens reasonably efficiently.Abbreviations ABC ATP-binding cassete - 2m 2-microglobulin - ER endoplasmic reticulum - IFN interferon - LMP low molecular weight peptide - MHC major histocompatibility complex - TAP transporter associated with antigen processing  相似文献   

2.
《Autophagy》2013,9(12):1839-1841
Autophagy-mediated major histocompatibility complex (MHC) class I presentation can follow either the conventional MHC class I pathway or a recently described vacuolar pathway. In the vacuolar pathway, protein degradation is effected by lysosomal proteases, peptide exchange takes place with recirculating MHC complexes and the newly formed peptide-MHC complexes reach the cell surface by the endocytic pathway. This pathway is independent of the proteasome and the transporter associated with antigen processing (TAP) complex, but generates the same, or a similar, epitope as that from the conventional MHC class I pathway. Here, we discuss different mechanisms by which autophagy mediates MHC class I-restricted antigen presentation, which is crucial to its role in the control of intracellular pathogens.  相似文献   

3.
Antigen-presenting cells survey their environment and present captured antigens bound to major histocompatibility complex (MHC) molecules. Formation of MHC-antigen complexes occurs in specialized compartments where multiple protein trafficking routes, still incompletely understood, converge. Autophagy is a route that enables the presentation of cytosolic antigen by MHC class II molecules. Some reports also implicate autophagy in the presentation of extracellular, endocytosed antigen by MHC class I molecules, a pathway termed “cross-presentation.” The role of autophagy in cross-presentation is controversial. This may be due to studies using different types of antigen presenting cells for which the use of autophagy is not well defined. Here we report that active use of autophagy is evident only in DC subtypes specialized in cross-presentation. However, the contribution of autophagy to cross-presentation varied depending on the form of antigen: it was negligible in the case of cell-associated antigen or antigen delivered via receptor-mediated endocytosis, but more prominent when the antigen was a soluble protein. These findings highlight the differential use of autophagy and its machinery by primary cells equipped with specific immune function, and prompt careful reassessment of the participation of this endocytic pathway in antigen cross-presentation.  相似文献   

4.
CD8+ T cells are generated in response to Leishmania major (Lm) or Toxoplasma gondii parasitic infections, indicating that exogenously delivered Ag can be processed for presentation by MHC class I molecules. We show that presentation of Lm nucleotidase (NT)-OVA is TAP independent in vivo and in vitro, and is inhibited by chloroquine, but not by proteasome inhibitors. In contrast, the presentation of T. gondii P30-OVA relies on the TAP/proteasome pathway. Presentation of OVA- or rNT-OVA-coated beads also bypassed TAP requirement above a certain Ag threshold. TAP was also dispensable for the presentation of wild-type Lm Ags to primed CD8+ T cells in vitro. Finally, in vivo priming of CD8+ T cells involved in acquired resistance to Lm was not compromised in TAP-deficient mice. Thus, Leishmania Ags appear to be confined to an intraphagosomal processing pathway that requires higher concentrations of Ags, suggesting that these parasites may have evolved strategies to impair the efficient endoplasmic reticulum-based, TAP-dependent cross-presentation pathway to avoid or delay CD8+ T cell priming.  相似文献   

5.
Expression of mouse major histocompatibility complex (MHC) class I molecules in different cell lines derived from Syrian hamsters has revealed antigen presentation deficiencies of some H2 allelic products in two cell lines (BHK and NIL-2) which were overcome by transient expression of the rat transporter associated with antigen processing (TAP; Lobigs et al. 1995). Here we show that in both cell lines the endogenous MHC class I cell surface expression was completely down-regulated. Lymphokine treatment induced endogenous and recombinant mouse MHC class I cell surface expression to levels similar to that in other Syrian hamster cell lines competent for antigen presentation through transduced H2 molecules. Accordingly, constitutive downregulation of expression of accessory molecules of the MHC class I pathway can reveal differences between H2 class I alleles in antigen presentation not encountered when the expression levels are augmented. In addition to the differential expression of MHC class I pathway genes, two cell lines representing competent (FF) and defective (BHK) antigen presentation phenotypes for mouse class I MHC restriction elements demonstrated substantial sequence polymorphism in Tap1 but not Tap2. Cytokine-treated FF or BHK cells and human TAP-deficient T2 cells transfected with FF or BHK TAP1 in combination with FF TAP2 differed in their preference for C-terminal peptide residues, as shown by an in vitro peptide transport assay. Thus, polymorphic residues in TAP1 can influence the substrate selectivity of the Syrian hamster peptide transporter.  相似文献   

6.
The immune defences of our organism against pathogens and malignant transformation rely to a large extent on surveillance by cytotoxic T lymphocytes. This surveillance in turn depends on the antigen processing system, which provides peptide samples of the cellular protein composition to MHC (major histocompatibility complex) class I molecules displayed on the cell surface. To continuously and almost in real time provide a representative sample of the array of proteins synthesized by the cell, this system exploits some fundamental pathways of the cellular metabolism, with the help of several dedicated players acting exclusively in antigen processing. Thus, a key element in the turnover of cellular proteins, protein degradation by cytosolic proteasome complexes, is exploited as source of peptides, by recruiting a minor fraction of the produced peptides as ligands for MHC class I molecules. These peptides can be further processed and adapted to the precise binding requirements of allelic MHC class I molecules by enzymes in the cytosol and endoplasmic reticulum. The latter compartment is equipped with several dedicated players helping peptide assembly with class I molecules. These include the TAP (transporter associated with antigen processing) membrane transporter pumping peptides into the ER, and tapasin, a chaperone with a structure similar to MHC molecules that tethers class I molecules awaiting peptide loading to the TAP transporter, and mediates optimization of MHC class I ligand by a still somewhat mysterious mechanism. Additional "house-keeping" chaperones that are known to act in concert in ER quality control, assist and control correct folding, oxidation and assembly of MHC class I molecules. While this processing system handles exclusively endogenous cellular proteins in most cells, dendritic cells employ one or several special pathways to shuttle exogenous, internalized proteins into the system, in a process referred to as cross-presentation. Deciphering the cell biological mechanism creating the link between the endosomal and secretory pathways that enables cross-presentation is one of the challenges faced by contemporary research in the field of MHC class I antigen processing.  相似文献   

7.
被主要组织相容性复合体(MHC)I类分子呈递在细胞表面的抗原肽大部分来源于细胞内新合成蛋白质的降解产物,抗原肽直接体现细胞内功能蛋白质的部分变化,蛋白酶体、氨肽酶和抗原转运体(TAP)参与调控抗原肽的生成。在MHC的组装、折叠过程中,抗原肽促进各亚基的结合和折叠进程;而在起始细胞的免疫应答过程中,抗原肽不仅诱导T细胞抗原受体的特异结合,更为重要的是延长MHC同T细胞抗原受体特异结合的作用时间。  相似文献   

8.
Within the adaptive immune system the transporter associated with antigen processing (TAP) plays a pivotal role in loading of peptides onto major histocompatibility (MHC) class I molecules. As a central tool to investigate the structure and function of the TAP complex, we created cysteine-less human TAP subunits by de novo gene synthesis, replacing all 19 cysteines in TAP1 and TAP2. After expression in TAP-deficient human fibroblasts, cysteine-less TAP1 and TAP2 are functional with respect to adenosine triphosphate (ATP)-dependent peptide transport and inhibition by ICP47 from herpes simplex virus. Cysteine-less TAP1 and TAP2 restore maturation and intracellular trafficking of MHC class I molecules to the cell surface.  相似文献   

9.
The delivery of protein fragments to major histocompatibility complex (MHC)-loading compartments of professional antigen-presenting cells is essential in the adaptive immune response against pathogens. Apart from the crucial role of the transporter associated with antigen processing (TAP) for peptide loading of MHC class I molecules in the endoplasmic reticulum, TAP-independent translocation pathways have been proposed but not identified so far. Based on its overlapping substrate specificity with TAP, we herein investigated the ABC transporter ABCB9, also named TAP-like (TAPL). Remarkably, TAPL expression is strongly induced during differentiation of monocytes to dendritic cells and to macrophages. TAPL does not, however, restore MHC class I surface expression in TAP-deficient cells, demonstrating that TAPL alone or in combination with single TAP subunits does not form a functional transport complex required for peptide loading of MHC I in the endoplasmic reticulum. In fact, by using quantitative immunofluorescence and subcellular fractionation, TAPL was detected in the lysosomal compartment co-localizing with the lysosome-associated membrane protein LAMP-2. By in vitro assays, we demonstrate a TAPL-specific translocation of peptides into isolated lysosomes, which strictly requires ATP hydrolysis. These results suggest a mechanism by which antigenic peptides have access to the lysosomal compartment in professional antigen-presenting cells.  相似文献   

10.
We hypothesize that over-expression of transporters associated with antigen processing (TAP1 and TAP2), components of the major histocompatibility complex (MHC) class I antigen-processing pathway, enhances antigen-specific cytotoxic activity in response to viral infection. An expression system using recombinant vaccinia virus (VV) was used to over-express human TAP1 and TAP2 (VV-hTAP1,2) in normal mice. Mice coinfected with either vesicular stomatitis virus plus VV-hTAP1,2 or Sendai virus plus VV-hTAP1,2 increased cytotoxic lymphocyte (CTL) activity by at least 4-fold when compared to coinfections with a control vector, VV encoding the plasmid PJS-5. Coinfections with VV-hTAP1,2 increased virus-specific CTL precursors compared to control infections without VV-hTAP1,2. In an animal model of lethal viral challenge after vaccination, VV-hTAP1,2 provided protection against a lethal challenge of VV at doses 100-fold lower than control vector alone. Mechanistically, the total MHC class I antigen surface expression and the cross-presentation mechanism in spleen-derived dendritic cells was augmented by over-expression of TAP. Furthermore, VV-hTAP1,2 increases splenic TAP transport activity and endogenous antigen processing, thus rendering infected targets more susceptible to CTL recognition and subsequent killing. This is the first demonstration that over-expression of a component of the antigen-processing machinery increases endogenous antigen presentation and dendritic cell cross-presentation of exogenous antigens and may provide a novel and general approach for increasing immune responses against pathogens at low doses of vaccine inocula.  相似文献   

11.
杨杰  董宋鹏  李子彬  高凤山 《生命科学》2014,(10):1018-1025
抗原处理相关转运体(transporter associated with antigen processing,TAP)蛋白在抗原提呈途径中发挥重要作用,它负责将内源性抗原从胞浆运送到内质网(endoplasmic reticulum,ER),以便主要组织相容性复合体(major histocompatibility complex,MHC)I结合多肽。TAP属于ATP结合盒(ATP-binding cassette,ABC)转运蛋白超家族B族,是由TAP1和TAP2两个亚基构成的异二聚体蛋白,其每个亚基各含有一个亲水的核酸结合区和一个疏水的跨膜结构域,并具有促进肽段转运的结构域。TAP参与MHC I类分子的组装,并在人获得性免疫系统中起着至关重要的作用。TAP基因具有多态性,因而增加了个体对疾病的易感性。TAP基因的突变及其调节机制的缺陷都可以导致其活性和表达下调,从而影响病毒性感染和肿瘤等疾病的发生。  相似文献   

12.
13.
Major histocompatibility complex class I-bound antigenic peptides generated in the cytosol are translocated into the ER by TAP. In the present study, the physical association of HSC73 with TAP in human lymphoblastoid T1 cells was demonstrated. The dissociation was induced in the presence of 10 mM ATP, indicating that the ADP-binding form of HSC73 might be associated with TAP. We found that HSC73-binding immunosuppressant, MeDSG disrupted the HSC73-TAP association, whereas it did not affect the binding of HSC73 to a substrate protein. MHC class I expression on the cell surface was also downregulated. Then, the effect of MeDSG on the TAP-mediated ER translocation was examined using two homologous model peptides, NGT-Bw4 and NGT-Bw6, which had distinct binding affinity to HSC73. Although high-affinity peptide NGT-Bw4 was translocated by TAP, low-affinity peptide NGT-Bw6 was not. The TAP-dependent translocation of NGT-Bw4 was abolished in the presence of MeDSG. Decreased presentation on the cell surface was shown for the human leukocyte antigen (HLA)-A31-restricted natural antigenic peptide F4.2, which had high affinity to HSC73, in the presence of MeDSG. It was indicated that disruption of the HSC73-TAP association resulted in inhibition of TAP-dependent translocation of HSC73-bound peptides. Our findings highlighted an important role of HSC73 for feeding antigenic peptides to TAP, and suggested a possibility that a synthetic polyamine might inhibit the function of HSC73, thereby suppressing MHC class I-restricted presentation of HSC73-bound antigenic peptides.  相似文献   

14.
Several endoplasmic reticulum proteins, including tapasin, play an important role in major histocompatibility complex (MHC) class I assembly. In this study, we assessed the influence of the tapasin cytoplasmic tail on three mouse MHC class I allotypes (H2-Kb, -Kd, and -Ld) and demonstrated that the expression of truncated mouse tapasin in mouse cells resulted in very low Kb, Kd, and Ld surface expression. The surface expression of Kd also could not be rescued by human soluble tapasin, suggesting that the surface expression phenotype of the mouse MHC class I molecules in the presence of soluble tapasin was not due to mouse/human differences in tapasin. Notably, soluble mouse tapasin was able to partially rescue HLA-B8 surface expression on human 721.220 cells. Thus, the cytoplasmic tail of tapasin (either mouse or human) has a stronger impact on the surface expression of murine MHC class I molecules on mouse cells than on the expression of HLA-B8 on human cells. A K408W mutation in the mouse tapasin transmembrane/cytoplasmic domain disrupted Kd folding and release from tapasin, but not interaction with transporter associated with antigen processing (TAP), indicating that the mechanism whereby the tapasin transmembrane/cytoplasmic domain facilitates MHC class I assembly is not limited to TAP stabilization. Our findings indicate that the C terminus of mouse tapasin plays a vital role in enabling murine MHC class I molecules to be expressed at the surface of mouse cells.  相似文献   

15.
Phagocytosis provides innate immune cells with a mechanism to take up and destroy pathogenic bacteria, apoptotic cells and other large particles. In some cases, however, peptide antigens from these particles are preserved for presentation in association with major histocompatibility complex (MHC) class I or class II molecules in order to stimulate antigen‐specific T cells. Processing and presentation of antigens from phagosomes presents a number of distinct challenges relative to antigens internalized by other means; while bacterial antigens were among the first discovered to be presented to T cells, analyses of the cellular mechanisms by which peptides from phagocytosed antigens assemble with MHC molecules and by which these complexes are then expressed at the plasma membrane have lagged behind those of conventional model soluble antigens. In this review, we cover recent advances in our understanding of these processes, including the unique cross‐presentation of phagocytosed antigens by MHC class I molecules, and in their control by signaling modalities in phagocytic cells.  相似文献   

16.
Mutations in transporters associated with antigen processing (TAP-1 and -2) required for the transport of cytosolic endogenous peptides to the endoplasmic reticulum correlate with increased metastatic potential and reduced host survival in several malignancies. To address the possible function of TAP as a "tumor suppressor" gene, we show that correction of TAP-1 and/or TAP-2 defects in B16 mouse melanoma enhanced the cell surface expression of MHC class I molecules and significantly reduced the rate of subcutaneous tumor growth and pulmonary metastatic burden. Cytotoxic assays confirmed increased sensitivity of TAP-1 and/or TAP-2 transfected clones of B16 melanoma to cytotoxic T lymphocytes. These results indicate that the expression of TAP limits the malignant potential of tumors with implications for CD8(+) T cell-based immunotherapy in controlling growth of certain TAP-deficient malignancies.  相似文献   

17.
A major class of tumors lack expression of the transporters associated with antigen processing (TAP). These proteins are essential for delivery of antigenic peptides into the lumen of the endoplasmic reticulum (ER) and subsequent assembly with nascent major histocompatibility complex (MHC) class I, which results in cell surface presentation of the trimeric complex to cytolytic T lymphocytes. Cytolytic T lymphocytes are major effector cells in immunosurveillance against tumors. Here we have tested the hypothesis that TAP downregulation in tumors allows immunosubversion of this effector mechanism, by establishing a model system to examine the role of TAP in vivo in restoring antigen presentation, immune recognition, and effects on malignancy of the TAP-deficient small-cell lung carcinoma, CMT.64. To test the potential of providing exogenous TAP in cancer therapies, we constructed a vaccinia virus (VV) containing the TAP1 gene and examined whether VV-TAP1 could reduce tumors in mice. The results demonstrate that TAP should be considered for inclusion in cancer therapies, as it is likely to provide a general method for increasing immune responses against tumors regardless of the antigenic complement of the tumor or the MHC haplotypes of the host.  相似文献   

18.
19.
The transporters associated with antigen processing (TAP) allow the supply of peptides derived from the cytosol to translocate to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I molecules. However, infected and tumor cells with TAP molecules blocked or individuals with nonfunctional TAP complexes are able to present HLA class I ligands generated by TAP-independent processing pathways. These peptides are detected by the CD8(+) lymphocyte cellular response. Here, the generation of the overall peptide repertoire associated with four different HLA class I molecules in TAP-deficient cells was studied. Using different protease inhibitors, four different proteolytic specificities were identified. These data demonstrate the different allele-dependent complex processing pathways involved in the generation of the HLA class I peptide repertoire in TAP-deficient cells.  相似文献   

20.
Cytotoxic CD8(+) T lymphocytes kill infected cells that display major histocompatibility complex (MHC) class I molecules presenting peptides processed from pathogen proteins. In general, the peptides are proteolytically processed from newly made endogenous antigens in the cytosol and require translocation to the endoplasmic reticulum (ER) for MHC class I loading. This last task is performed by the transporters associated with antigen processing (TAP). Sampling of suspicious pathogen-derived proteins reaches beyond the cytosol, and MHC class I loading can occur in other secretory or endosomal compartments besides the ER. Peptides processed from exogenous antigens can also be presented by MHC class I molecules to CD8(+) T lymphocytes, in this case requiring delivery from the extracellular medium to the processing and MHC class I loading compartments. The endogenous or exogenous antigen can be processed before or after its transport to the site of MHC class I loading. Therefore, mechanisms that allow the full-length protein or processed peptides to cross several subcellular membranes are essential. This review deals with the different intracellular pathways that allow the traffic of antigens to compartments proficient in processing and loading of MHC class I molecules for presentation to CD8(+) T lymphocytes and highlights the need to molecularly identify the transporters involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号