首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A submicroscopic deletion of chromosome 22q11.2 has been identified in the majority of patients with the DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes, and in some patients with the Opitz G/BBB and Cayler cardiofacial syndromes. We have been involved in the analysis of DiGeorge syndrome and related diagnoses since 1982 and have evaluated a large number of patients with the deletion. We describe our cohort of 250 patients whose clinical findings help to define the extremely variable phenotype associated with the 22q11.2 deletion and may assist clinicians in providing genetic counseling and guidelines for clinical management based on these findings.  相似文献   

2.
A review of 35 cases of asymmetric crying facies   总被引:2,自引:0,他引:2  
A review of 35 cases of asymmetric crying facies: Congenital asymmetric crying facies (ACF) is caused by congenital hypoplasia or agenesis of the depressor anguli oris muscle (DAOM) on one side of the mouth. It is well known that this anomaly is frequently associated with cardiovascular, head and neck, musculoskeletal, respiratory, gastrointestinal, central nervous system, and genitourinary anomalies. In this article we report 35 ACF patients (28 children and 7 adults) and found additional abnormalities in 16 of them (i.e. 45%). The abnormalities were cerebral and cerebellar atrophy, mega-cisterna magna, mental motor retardation, convulsions, corpus callosum dysgenesis, cranial bone defect, dermoid cyst, spina bifida occulta, hypertelorism, micrognatia, retrognatia, hemangioma on the lower lip, short frenulum, cleft palate, low-set ears, preauricular tag, mild facial hypoplasia, sternal cleft, congenital heart defect, renal hypoplasia, vesicoureteral reflux, hypertrophic osteoarthropathy, congenital joint contractures, congenital hip dislocation, polydactyly, and umbilical and inguinal hernia. Besides these, one infant was born to a diabetic mother, and had atrial septal defect and the four other children had 4p deletion, Klinefelter syndrome, isolated CD4 deficiency and Treacher-Collins like facial appearance, respectively Although many of these abnormalities were reported in association with ACF, cerebellar atrophy, sternal cleft, cranial bone defect, infant of diabetic mother, 4p deletion, Klinefelter syndrome, isolated CD4 deficiency and Treacher-Collins like facial appearance were not previously published.  相似文献   

3.
Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  相似文献   

4.
Besides DiGeorge, velocardiofacial and conotruncal anomaly face syndromes, some of the isolated congenital heart diseases have also been associated with a chromosomal deletion in 22q11. These disease entities, which had originally been considered to have a different genetic background, are now included in the CATCH-22 microdeletion complex. CATCH 22 is an acronym for cardiac defect, abnormal facies, thymic hypoplasia or aplasia and T-cell deficiency, cleft palate, hypoparathyroidism, and hypocalcemia. In the present study, we focused on the complex cardiovascular defects (CCVD) and screened 40 patients for a microdeletion of 22q11 by fluorescence in situ hybridization using the D22S75 DNA probe and for associated CATCH features. The patients were from genetic counseling (n = 15) or fetopathology (n = 3) of the Clinical Genetics Department in Marburg and from the Pediatric Cardiology Department (n = 22) in Mainz. Monosomy 22q11 was detected in 9 cases (= 22.5%). Familial transmission with one mildly affected parent and one affected sib each was proven in two cases. The CCVDs comprised complex conotruncal defects such as tetralogy of Fallot, double outlet right ventricle, transposition of great arteries and truncus arteriosus communis, or anomalies of the derivatives of the branchial arch arteries in association with a ventricular septal defect, including one case of atresia of the ductus arteriosus with pulmonary artery aneurysm and resulting in fetal hydrops. All 13 patients with a deletion of 22q11 showed at least one additional CATCH symptom. Most consistently, facial dysmorphy was apparent (92%), while hypocalcemia, mostly at threshold values, was present in 62% and thymic hypoplasia including borderline low T-lymphocyte numbers was observed in 41%. None of the patients presented with a cleft palate. A high intrafamilial variability in expression was also evident with respect to the CCVD. Our findings indicate that seemingly isolated complex cardiovascular defects associated with a 22q11 microdeletion most probably do not represent a distinct subgroup within the CATCH-22 complex but are syndromal in nature with extracardiac features that are often overlooked. Received: 25 July 1996 / Revised: 15 October 1996  相似文献   

5.
High-resolution cytogenetics analysis of peripheral blood lymphocytes was done prospectively on 27 of 28 patients with features of DiGeorge anomaly. Twenty-two patients (81%) had normal chromosome studies with no detectable deletion in chromosome 22. Five patients (18%) had demonstrable chromosome abnormalities. Three patients had monosomy 22q11, one due to a 4q;22q translocation, one due to a 20q;22q translocation, and one due to an interstitial deletion of 22q11. One patient had monosomy 10p13, and one patient had monosomy 18q21.33, although the latter had subsequent resolution of T-cell defects. These findings are consistent with the heterogeneity of DiGeorge anomaly but confirm the association with monosomy 22q11 in some cases. However, monosomy 10p13 may also lead to this phenotype. Because of these associated chromosome findings, cytogenetic analyses should be done on patients with suspected DiGeorge anomaly. This is particularly important since many of the abnormalities involving chromosome 22 are translocations that can be familial with a higher recurrence risk. Since only one subtle, interstitial deletion of chromosome 22 was observed, it is not clear whether high-resolution cytogenetic analysis is cost beneficial for all such patients.  相似文献   

6.
Complex chromosome rearrangements (CCRs) are extremely rare but often associated with mental retardation, congenital anomalies, or recurrent spontaneous abortions. We report a de novo apparently balanced CCR involving chromosomes 3 and 12 and a two-way translocation between chromosomes 11 and 21 in a woman with mild intellectual disability, obesity, coarse facies, and apparent synophrys without other distinctive dysmorphia or congenital anomalies. Molecular analysis of breakpoints using fluorescence in situ hybridization (FISH) with region-specific BAC clones revealed a more complex character for the CCR. The rearrangement is a result of nine breaks and involves reciprocal translocation of terminal chromosome fragments 3p24.1→pter and 12q23.1→qter, insertion of four fragments of the long arm of chromosome 12: q14.1→q21?, q21?→q22, q22→q23.1, and q23.1→q23.1 and a region 3p22.3→p24.1 into chromosome 3q26.31. In addition, we detected a ~0.5-Mb submicroscopic deletion at 3q26.31. The deletion involves the chromosome region that has been previously associated with Cornelia de Lange syndrome (CdLS) in which a novel gene NAALADL2 has been mapped recently. Other potential genes responsible for intellectual deficiency disrupted as a result of patient’s chromosomal rearrangement map at 12q14.1 (TAFA2), 12q23.1 (METAP2), and 11p14.1 (BDNF).  相似文献   

7.
Velo-cardio-facial syndrome (VCFS) is characterized by conotruncal cardiac defects, cleft palate, learning disabilities, and characteristic facial appearance and is associated with hemizygous deletions within 22q11. A newly recognized clinical feature is the presence of psychiatric illness in children and adults with VCFS. To ascertain the relationship between psychiatric illness, VCFS, and chromosome 22 deletions, we evaluated 26 VCFS patients by clinical and molecular biological methods. The VCFS children and adolescents were found to share a set of psychiatric disorders, including bipolar spectrum disorders and attention-deficit disorder with hyperactivity. The adult patients, >18 years of age, were affected with bipolar spectrum disorders. Four of six adult patients had psychotic symptoms manifested as paranoid and grandiose delusions. Loss-of-heterozygosity analysis of all 26 patients revealed that all but 3 had a large 3-Mb common deletion. One patient had a nested distal deletion and two did not have a detectable deletion. Somatic cell hybrids were developed from the two patients who did not have a detectable deletion within 22q11 and were analyzed with a large number of sequence tagged sites. A deletion was not detected among the two patients at a resolution of 21 kb. There was no correlation between the phenotype and the presence of the deletion within 22q11. The remarkably high prevalence of bipolar spectrum disorders, in association with the congenital anomalies of VCFS and its occurrence among nondeleted VCFS patients, suggest a common genetic etiology.  相似文献   

8.
Mowat-Wilson syndrome is a mental retardation-multiple congenital anomaly syndrome characterized by a typical facies, developmental delay, epilepsy, and variable congenital malformations, including Hirschsprung disease, urogenital anomalies, congenital heart disease, and agenesis of the corpus callosum. This disorder is sporadic and is caused by heterozygous mutations or deletions of the ZFHX1B gene located in the 2q22 region. We report here the first Moroccan patient, born to consanguineous parents, with Mowat-Wilson syndrome, due to a de novo, unreported mutation of the ZFHX1B gene.  相似文献   

9.
To investigate molecular and clinical aspects of conotruncal anomaly face (CAF), we studied the correlation between deletion size and phenotype and the mode of inheritance in 183 conotruncal anomaly face syndrome (CAFS) patients. Hemizygosity for a region of 22q11.2 was found in 180 (98%) of the patients with CAFS by fluorescence in situ hybridization (FISH) using the N25(D22S75) DiGeorge critical region (DGCR) probe. No hemizygosity was found in three (2%) of the patients with CAFS by FISH using nine DiGeorge critical region probes and a SD10P1 probe (DGA II locus). None of these three patients had mental retardation and just one had nasal intonation, which was observed in almost all of the 180 CAFS patients who carried deletions (mental retardation, 92%; nasal voice, 88%). Nineteen of 143 families (13%) had familial CAFS and 16 affected parents (84%) were mothers. Although only two of the affected parents had cardiovascular anomalies, the deletion size in the 16 affected parents and their affected family members, who were studied by FISH analysis, was the same. It indicates that extragenic factors may play a role in the genesis of phenotypic variability, especially in patients with cardiovascular anomalies. No familial cases were found among CAFS patients with absent thymus/DiGeorge anomaly (DGA). Also, in all 18 CAFS patients with completely absent thymus/DGA and all 6 CAFS patients with schizophrenia, it was revealed that the deletion was longer distally. A study of the origin of the deletion using microsatellite analyses in 48 de novo patients showed that in 65% of CAFS patients it was maternal, while in 64% of DGA patients it was paternal. The findings of this study indicated that CAF was almost always associated with the deletion of 22q11.2. As well as the major features of the syndrome, other notable extracardiac anomalies were found to be susceptibility to infection, schizophrenia, atrophy or dysmorphism of the brain, thrombocytopenia, short stature, facial palsy, anal atresia, and mild limb abnormalities. Received: 5 January 1998 / Accepted: 7 March 1998  相似文献   

10.
Velocardiofacial syndrome, DiGeorge syndrome, and conotruncal anomaly face syndrome, now collectively referred to as 22q11deletion syndrome (22q11DS) are caused by microdeletions on chromosome 22q11. The great majority ( approximately 90%) of these deletions are 3 Mb in size. The remaining deleted patients have nested break-points resulting in overlapping regions of hemizygosity. Diagnostic testing for the disorder is traditionally done by fluorescent in situ hybridization (FISH) using probes located in the proximal half of the region common to all deletions. We developed a novel, high-resolution single-nucleotide polymorphism (SNP) genotyping assay to detect 22q11 deletions. We validated this assay using DNA from 110 nondeleted controls and 77 patients with 22q11DS that had previously been tested by FISH. The assay was 100% sensitive (all deletions were correctly identified). Our assay was also able to detect a case of segmental uniparental disomy at 22q11 that was not detected by the FISH assay. We used Bayesian networks to identify a set of 17 SNPs that are sufficient to ascertain unambiguously the deletion status of 22q11DS patients. Our SNP based assay is a highly accurate, sensitive, and specific method for the diagnosis of 22q11 deletion syndrome.  相似文献   

11.
A newborn male patient with a partial trisomy 13q22----qter, derived from a maternal translocation (13;15)(q22;p11) is reported. This non-frequent chromosomal anomaly leads to a characteristic phenotype easily recognizable from other craniosynostosis syndromes, in which the cranial malformation is often associated with auricular and limb defects. This phenotype includes: cranial malformation, characteristic facies, mental and developmental retardation, urologic and genital anomalies, polydactily, abnormal muscular tonicity and convulsive status. Our patient, a "pure" partial trisomy, without other associated chromosomal anomaly, is compared with the published cases.  相似文献   

12.
13.
Goldenhar syndrome (GS) or oculoauriculovertebral dysplasia (OAVD) is characterized by pre-auricular skin tags, microtia, facial asymmetry, ocular abnormalities and vertebral anomalies of different size and shape. The phenotypical findings of this syndrome are variable due to heterogenous aetiology. For that reason, the physician sometimes faces difficulty when making a definite diagnosis of OAVD. We reviewed the clinical and laboratory findings of 31 patients (15 boys and 16 girls) aged from 1 day to 16 years with the clinical diagnosis of GS. The characteristic features were pre-auricular skin tags (90%), microtia (52%), hemifacial microsomia (77%) and epibulbar dermoids (39%). Vertebral anomalies were noted in 70% of the patients. Cardiac malformations were found in 39% while a genitourinary anomaly was noted in 23% and various central nervous system malformations in 47%. There were 3 pregnancies following an intracytoplasmic sperm injection (ICSI) technique among the 31 patients. Two patients with GS came from the same family. Their relatives had hydrocephaly, myelomeningocele and neural tube defects. It is known that some chromosomal aberrations are seen in GS. We performed chromosome analysis of 29 patients. Among these cases, only one patient with severe mental and motor retardation had a 47,XX,+der(22)t(11,22)(q23; q11 karyotype due to a maternal balanced translocation t(11;22)(q23;q11). This translocation was demonstrated in her sister, brother and maternal uncle. Additionally CATCH 22 analysis in 13 cases with OAVD with a CATCH 22 phenotype revealed no deletion. OAVD patients present with different morphologic features and systemic manifestations. A multidisciplinary approach should be undertaken by departments such as pediatric cardiology, audiology, ophthalmology and plastic surgery when evaluating patients with OAVD. Chromosome analysis should be performed in every patient with Goldenhar syndrome.  相似文献   

14.
Emanuel syndrome is an inherited chromosomal abnormality resulting from 3:1 meiotic segregation from parental balanced translocation carrier t(11;22)(q23;q11), mostly of maternal origin. It is characterized by mental retardation, microcephaly, preauricular tag or sinus, ear anomalies, cleft or high arched palate, micrognathia, congenital heart diseases, kidney abnormalities, structural brain anomalies and genital anomalies in male. Here in, we describe a female patient with supernumerary der(22) syndrome (Emanuel syndrome) due to balanced translocation carrier father t(11;22) (q23;q11). She was mentally and physically disabled and had most of the craniofacial dysmorphism of this syndrome. Our patient had cleft palate, maldeveloped corpus callosum and hind brain with normal internal organs. Additionally, arachnodactyly, hyperextensibility of hand joints, abnormal deep palmar and finger creases, extra finger creases and bilateral talipus were evident and not previously described with this syndrome. Cytogenetic analysis and FISH documented that the patient had both translocation chromosomes plus an additional copy of der(22) with karyotyping: 47,XX,t(11; 22)(q23;q11),+der(22)t(11;22)(q23;q11). We postulated that this rare chromosomal complement can arise from; 2:2 segregation in the first meiotic division of the balanced translocation father followed by non-disjunction at meiosis II in the balanced spermatocyte.  相似文献   

15.
Two siblings are described with duplication 14q/deletion 2q due to a paternal translocation (2;14) (q37.1;q31.2). The first one, a boy, born at term, lived 14 days. The second one, a female foetus, was born after induced labour when the anomaly was discovered by way of amniocentesis. They both had almost identical phenotypes. From a study of the literature it is inferred that a typical asymmetric head form, low set abnormal ears, micrognathia, long upper lip, rib anomalies, camptodactyly, long fingers and contractures are prominent features of the syndrome.  相似文献   

16.
It is well established that DiGeorge syndrome (DGS) may be associated with monosomy of 22q11-pter. More recently, DNA probes have been used to detect hemizygosity for this region in patients with no visible karyotypic abnormality. However, DGS has also been described in cases where the cytogenetic abnormality does not involve 22q11; for instance, four cases of 10p- have been reported. In this study we have prospectively analyzed patients, by using DNA markers from 22q11, to assess the frequency of 22q11 rearrangements in DGS. Twenty-one of 22 cases had demonstrable hemizygosity for 22q11. Cytogenetic analysis had identified interstitial deletion in 6 of 16 cases tested; in 6 other cases no karyotype was available. When these results are combined with those from our previous studies, 33 of 35 DGS patients had chromosome 22q11 deletions detectable by DNA probes.  相似文献   

17.
Hemizygous deletion of chromosome 22q11 (del22q11) causes thymic, parathyroid, craniofacial and life-threatening cardiovascular birth defects in 1 in 4,000 infants. The del22q11 syndrome is likely caused by haploinsufficiency of TBX1, but its variable expressivity indicates the involvement of additional modifiers. Here, we report that absence of the Vegf164 isoform caused birth defects in mice, reminiscent of those found in del22q11 patients. The close correlation of birth and vascular defects indicated that vascular dysgenesis may pathogenetically contribute to the birth defects. Vegf interacted with Tbx1, as Tbx1 expression was reduced in Vegf164-deficient embryos and knocked-down vegf levels enhanced the pharyngeal arch artery defects induced by tbx1 knockdown in zebrafish. Moreover, initial evidence suggested that a VEGF promoter haplotype was associated with an increased risk for cardiovascular birth defects in del22q11 individuals. These genetic data in mouse, fish and human indicate that VEGF is a modifier of cardiovascular birth defects in the del22q11 syndrome.  相似文献   

18.
The DiGeorge syndrome (DGS) is a developmental defect of the third and fourth pharyngeal pouches, which is associated with congenital heart defects, hypoparathyroidism, cell-mediated immunodeficiency, velo-pharyngeal insufficiency and craniofacial dysmorphism. The aetiological factor in a great majority of DGS cases is monosomy for the chromosomal region 22q11. To analyze DGS at the molecular level, a new molecular probe (DGCR680) encompassing the ADU balanced translocation breakpoint was prepared. When 13 Korean patients with DGS-type congenital heart disease were analyzed with this probe, 9 turned out to have a deletion at this locus, and all of them except one exhibited a typical facial dysmorphism associated DGS. Though only 9 independent patients were detected to have a deletion at the locus using the commercial probe N25 (D22S75), which maps at about 160 kb from the ADU breakpoint to the telomeric end, results from fluorescence in situ hybridization revealed a deletion in all cases tested at this locus. Two patients who had a deletion at the locus D22S75 but not at DGCR680 did not exhibit any DGS-type facial abnormalities. This result implies that the 680 bp probe covering the ADU translocation breakpoint might be a candidate for a molecular marker that can distinguish a specific phenotype, such as facial features associated with the DiGeorge syndrome. This study also suggested that systematic approaches with several small DNA probes along the DGCR could help to dissect the complex phenotypes associated with the DiGeorge syndrome, such as cardiac defects, abnormal faces, thymic hypoplasia, cleft palate, and hypocalcemia, etc.  相似文献   

19.
Congenital heart defects (CHDs) are found in 75% of patients with DiGeorge/velocardiofacial (DG/VCF) syndromes with deletion 22q11.2 (del22q11). The purpose of this study was to analyse clinical features and, particularly, types and subtypes of CHDs associated with del22q11 in our series of patients and in those reported in other studies. All patients with CHD and del22q11 present major or minor clinical features of DG/VCF syndrome. Many children, particularly in the neonatal age, have only a "subtle" phenotype, so that accurate phenotypical evaluation is mandatory for selecting patients with CHD at risk for del22q11. Conotruncal cardiac defects are the most common CHDs in patients with DG/VCF syndrome, but other defects can also occur. Peculiar anatomical subtypes are found in patients with del22q11. They are frequently complex, consisting in malalignment with deficiency of the infundibular septum and anomalies of the aortic arch and pulmonary arteries.  相似文献   

20.
We report a 6-year-old patient with hemophilia A, who also exhibited clinical features typical of 22q11.2 deletion syndrome (22qDS). The specific traits were mild mental retardation, speech delay, hypernasal speech, deficits in voice quality and articulation, narrow palpebral fissures, broad and depressed nasal root, high-arched palate, microstomia, and overfolded ears. The patient had no associated congenital cardiac or palatal malformations. It can be particularly difficult to identify this syndrome in newborns and infants without congenital heart defects. This case underlines that microdeletion of chromosome 22q11.2 should be considered in any patient who exhibits typical clinical features of 22qDS, regardless of whether they have another single-gene disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号