首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro apoptotic cell death during erythroid differentiation   总被引:1,自引:0,他引:1  
Erythropoiesis occurs in bone marrow and it has been shown that during in vivo erythroid differentiation some immature erythroblasts undergo apoptosis. In this regard, it is known that immature erythroblasts are FasL- and TRAIL-sensitive and can be killed by cells expressing these ligand molecules. In the present study, we have investigated the cell death phenomenon that occurs during a common unilineage model of erythroid development. Purified CD34+ human haemopoietic progenitors were cultured in vitro in the presence of SCF, IL-3 and erythropoietin. Their differentiation stages and apoptosis were followed by multiple technical approaches. Flow cytometric evaluation of surface and intracellular molecules revealed that glycophorin A appeared at day 3-4 of incubation and about 75% of viable cells co-expressed high density glycophorin A (Gly(bright)) and adult haemoglobin at day 14 of culture, indicating that this system reasonably recapitulates in vivo normal erythropoiesis. Interestingly, when mature (Gly(bright)) erythroid cells reached their higher percentages (day 14) almost half of cultured cells were apoptotic. Morphological studies indicated that the majority of dead cells contained cytoplasmic granular material typical of basophilic stage, and DNA analysis by flow cytometry and TUNEL reaction revealed nuclear fragmentation. These observations indicate that in vitro unilineage erythroid differentiation, as in vivo, is associated with apoptotic cell death of cells with characteristics of basophilic erythroblasts. We suggest that the interactions between different death receptors on immature basophilic erythroblasts with their ligands on more mature erythroblasts may contribute to induce apoptosis in vitro.  相似文献   

2.
Apoptosis of leukocytes is known to strongly influence the immunopathogenesis of infection. In this study, we dissected the death pathways of murine macrophages (MΦs) infected with the intracellular pathogen Histoplasma capsulatum. Yeast cells caused apoptosis of MΦs at a wide range of multiplicity of infection, but smaller inocula resulted in delayed detection of apoptosis. Upon infection, caspases 3 and 1 were activated, and both contributed to cell death; however, only the former was involved in apoptosis. The principal driving force for apoptosis involved the extrinsic pathway via engagement of TNFR1 by TNF-α. Infected MΦs produced IL-10 that dampened apoptosis. The chronology of TNF-α and IL-10 release differed in vitro. The former was detected by 2 h postinfection, and the latter was not detected until 8 h postinfection. In vivo, the lungs of TNFR1(-/-) mice infected for 1 d contained fewer apoptotic MΦs than wild-type mice, whereas the lungs of IL-10(-/-) mice exhibited more. Blockade of apoptosis by a pan-caspase inhibitor or by simvastatin sharply reduced the release of TNF-α but enhanced IL-10. However, these treatments did not modify the fungal burden in vitro over 72 h. Thus, suppressing cell death modulated cytokine release but did not alter the fungal burden. These findings provide a framework for the early pathogenesis of histoplasmosis in which yeast cell invasion of lung MΦs engenders apoptosis, triggered in part in an autocrine TNF-α-dependent manner, followed by release of IL-10 that likely prevents apoptosis of newly infected neighboring phagocytes.  相似文献   

3.
A single chicken anemia virus protein induces apoptosis.   总被引:38,自引:0,他引:38       下载免费PDF全文
Chicken anemia virus (CAV) causes cytopathogenic effects in chicken thymocytes and cultured transformed mononuclear cells via apoptosis. Early after infection of chicken mononuclear cells, the CAV-encoded protein VP3 exhibits a finely granular distribution within the nucleus. At a later stage after infection, VP3 forms aggregates. At this point, the cell becomes apoptotic and the cellular DNA is fragmented and condensed. By immunogold electron microscopy VP3 was shown to be associated with apoptotic structures. In vitro, expression of VP3 induced apoptosis in chicken lymphoblastoid T cells and myeloid cells, which are susceptible to CAV infection, but not in chicken embryo fibroblasts, which are not susceptible to CAV. Expression of a C-terminally truncated VP3 induced much less pronounced apoptosis in the chicken lymphoblastoid T cells.  相似文献   

4.
Listeria monocytogenes induces apoptosis in vitro and in vivo in a variety of cell types. However, the mechanism of cell death in L. monocytogenes -infected macrophages was initially reported to be distinct from apoptosis. Here, we studied the mechanism of L. monocytogenes -induced cell death using sensitive fluorescent techniques. We found that caspase-1 activation preceded cell death of macrophages infected with L. monocytogenes , using fluorogenic substrates. Caspase-1 activation was diminished after infection with wild-type L. monocytogenes when cells were treated with NH4Cl, or if they were infected with a listeriolysin mutant that cannot escape from the phagolysosome. Mitochondrial membrane integrity was preserved during the infection. A particular mechanism of cell death, recently termed 'pyroptosis', is associated with infection by intracellular microorganisms, and has an inherent pro-inflammatory character, due to involvement of caspase-1 activation with consequent IL-1β and IL-18 production. Cell death through caspase-1 activation would constitute a defence mechanism of macrophages which induces cell death to eliminate the bacteria's intracytosolic niche and recruits early host's defences through the secretion of inflammatory cytokines.  相似文献   

5.
Apoptosis plays an essential role in the removal of activated CD8 T cells that are no longer required during or postinfection. The Bim-dependent intrinsic pathway of apoptosis removes effector CD8 T cells upon clearance of viral infection, which is driven by withdrawal of growth factors. Binding of Fas ligand to Fas mediates activation-induced T cell death in vitro and cooperates with Bim to eliminate CD8 T cells during chronic infection in vivo, but it is less clear how this pathway of apoptosis is initiated. In this study, we show that the costimulatory TNFR CD27 provides a dual trigger that can enhance survival of CD8 T cells, but also removal of activated CD8 T cells through Fas-driven apoptosis. Using in vitro stimulation assays of murine T cells with cognate peptide, we show that CD27 increases T cell survival after stimulation with low doses of Ag, whereas CD27 induces Fas-driven T cell apoptosis after stimulation with high doses of Ag. In vivo, the impact of constitutive CD70-driven stimulation on the accumulation of memory and effector CD8 T cells is limited by Fas-driven apoptosis. Furthermore, introduction of CD70 signaling during acute infection with influenza virus induces Fas-dependent elimination of influenza-specific CD8 T cells. These findings suggest that CD27 suppresses its costimulatory effects on T cell survival through activation of Fas-driven T cell apoptosis to maintain T cell homeostasis during infection.  相似文献   

6.
La Crosse virus causes a highly cytopathic infection in cultured cells and in the murine central nervous system (CNS), with widespread neuronal destruction. In some viral infections of the CNS, apoptosis, or programmed cell death, has been proposed as a mechanism for cytopathology (Y. Shen and T. E. Shenk, Curr. Opin. Genet. Dev. 5:105-111, 1995). To determine whether apoptosis plays a role in La Crosse virus-induced cell death, we performed experiments with newborn mice and two neural tissue culture models. Newborn mice infected with La Crosse virus showed evidence of apoptosis with the terminal deoxynucleotidyl transferase-mediated nicked-end labeling (TUNEL) assay and, concomitantly, histopathological suggestion of neuronal dropout. Infection of tissue culture cells also resulted in DNA fragmentation, TUNEL reactivity, and morphological changes in the nuclei characteristic of apoptotic cells. As in one other system (S. Ubol, P. C. Tucker, D. E. Griffin, and J. M. Hardwick, Proc. Natl. Acad. Sci. USA 91:5202-5206, 1994), expression of the human proto-oncogene bcl-2 was able to protect one neuronal cell line, N18-RE-105, from undergoing apoptosis after La Crosse virus infection and prolonged the survival of infected cells. Nevertheless, expression of bcl-2 did not prevent eventual cytopathicity. However, a human neuronal cell line, NT2N, was resistant to both apoptosis and other types of cytopathicity after infection with La Crosse virus, reaffirming the complexity of cell death. Our results show that apoptosis is an important consequence of La Crosse virus infection in vivo and in vitro.  相似文献   

7.
We present evidence of cell death by apoptosis during the development of bone-like tissue formation in vitro. Fetal rat calvaria-derived osteoblasts differentiate in vitro, progressing through three stages of maturation: a proliferation period, a matrix maturation period when growth is downregulated and expression of the bone cell phenotype is induced, and a third mineralization stage marked by the expression of bone-specific genes. Here we show for the first time that cells differentiating to the mature bone cell phenotype undergo programmed cell death and express genes regulating apoptosis. Culture conditions that modify expression of the osteoblast phenotype simultaneously modify the incidence of apoptosis. Cell death by apoptosis is directly demonstrated by visualization of degraded DNA into oligonucleosomal fragments after gel electrophoresis. Bcl-XL, an inhibitor of apoptosis, and Bax, which can accelerate apoptosis, are expressed at maximal levels 24 h after initial isolation of the cells and again after day 25 in heavily mineralized bone tissue nodules. Bcl-2 is expressed in a reciprocal manner to its related gene product Bcl-XL with the highest levels observed during the early post-proliferative stages of osteoblast maturation. Expression of p53, c-fos, and the interferon regulatory factors IRF-1 and IRF-2, but not cdc2 or cdk, were also induced in mineralized bone nodules. The upregulation of Msx-2 in association with apoptosis is consistent with its in vivo expression during embryogenesis in areas that will undergo programmed cell death. We propose that cell death by apoptosis is a fundamental component of osteoblast differentiation that contributes to maintaining tissue organization. J. Cell. Biochem. 68:31–49, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Cell killing by avian leukosis virus subgroup B (ALV-B) in cultures has been extensively studied, but the molecular basis of this process has not been established. Here we show that superinfection, which has been linked to cell killing by ALV-B, plays no crucial role in cell death induction. Instead, we show that signaling by the ALV-B receptor, TVB(S3), a member of the tumor necrosis factor receptor family, is essential for ALV-B-mediated cell death. TVB(S3) activated caspase-dependent apoptosis during ALV-B infection. Strikingly, apoptosis induction occurred predominantly in uninfected cells, while ALV-B-infected cells were protected against cell death. This bystander killing phenomenon was reproduced in a virus-free system by cocultivating ALV-B Env-expressing cells with TVB(S3)-expressing cells. Taken together, our results indicated that ALV-B-mediated apoptosis is triggered by ALV-B Env-TVB(S3) interactions.  相似文献   

9.
Reovirus serotype 3 strains infect neurons within specific regions of the neonatal mouse brain and produce a lethal meningoencephalitis. Viral replication and pathology colocalize and have a predilection for the cortex, hippocampus, and thalamus. We have shown previously that infection of cultured fibroblasts and epithelial cells with reovirus type 3 Dearing (T3D) and other type 3 reovirus strains results in apoptotic cell death, suggesting that apoptosis is a mechanism of cell death in vivo. We now report that T3D induces apoptosis in infected mouse brain tissue. To determine whether reovirus induces apoptosis in neural tissues, newborn mice were inoculated intracerebrally with T3D, and at various times after inoculation, brain tissue was assayed for viral antigen by immunostaining and apoptosis was identified by DNA oligonucleosomal laddering and in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. Cells were also stained with cresyl violet to detect morphological changes characteristic of apoptosis, including chromatin condensation and cell shrinkage. DNA laddering was detected in T3D- but not in mock-infected brain tissue. Apoptotic cells were restricted to the same regions of the brain in which infected cells and tissue damage were observed. These findings suggest that virus-induced apoptosis is a mechanism of cell death, tissue injury, and mortality in reovirus-infected mice. The correlation between apoptosis and pathogenesis in vivo identifies apoptosis as a potential target for molecular and pharmacological strategies designed to curtail or prevent diseases resulting from induction of this cell death pathway.  相似文献   

10.
Yu AC  Lau AM  Fu AW  Lau LT  Lam PY  Chen XQ  Xu ZY 《Neurochemical research》2002,27(12):1663-1668
A very large body of evidence from in vivo studies has been accumulated on a link between the change of energy and cell survival/apoptosis. Using an in vitro ischemia model, we have previously shown that ischemia could induce apoptosis in astrocytes. In this study, we utilized the same in vitro model to investigate changes in ATP and ADP levels in cultured astrocytes and attempted to demonstrate an energy-cell death linkage. Astrocytes remained unaltered after 2 hr of ischemia but were moderately or severely damaged after 4 or 6-8 hr, respectively. The astrocytes that survived various lengths of in vitro ischemic incubation retained their ability to produce ATP after ischemia. Both ATP and ADP levels were increased in astrocytes that remained alive under in vitro ischemia for over 6 hr. The largest decline in the percent of viable astrocytes during ischemia corresponded well to the reduction in ATP and ADP levels in these cultures.  相似文献   

11.
We measured changes with growth in lung function and airway reactivity after acute canine parainfluenza virus type 2 (CPI2, n = 5), canine adenovirus type 2 (CAV2, n = 7), and sequential CAV2-CPI2 (n = 6) infections or no infection (controls, n = 6) in beagle puppies (age approximately 79 days). In the CPI2 and CAV2 groups, a lower respiratory illness developed by day 3 postinfection with clinical recovery by day 14. In the CAV2-CPI2 group, puppies were inoculated initially with CAV2 and 12 days later with CPI2. In this group, illness persisted until day 14 after infection with CPI2. Lung resistance (RL), dynamic (Cdyn) and static (Cst) lung compliance, functional residual capacity (FRC), and responsiveness to aerosolized histamine were measured before infection and at periodic intervals until 239 +/- 43 days of age. Lung function data were analyzed using a longitudinal random effects model. In all groups, FRC, Cst, and Cdyn increased with age. In all infected groups, the regression slopes for Cdyn were steeper than in controls. RL decreased linearly with age without group slope differences. Histamine reactivity increased with age, but there were no differences in slope among groups. Lung pathological studies showed areas of obliterative bronchiolitis and chronic small airways inflammation particularly in the CAV2 and CAV2-CPI2 groups. Thus, viral bronchiolitis produces chronic small airways inflammation in beagle puppies and alters the changes in lung function occurring with growth. Histamine reactivity increases with age and is not modified by viral infection.  相似文献   

12.
Jones  L. L  Banati  R. B  Graeber  M. B  Bonfanti  L  Raivich  G  Kreutzberg  G. W 《Brain Cell Biology》1997,26(11):755-770
Brain lesions, even of the most subtle type, are accompanied by the activation of microglia, the main immune cells of the brain. Microglial cells dramatically increase in number through proliferation and adhere to the injured neurons, where they displace the synaptic input. After proliferation, microglia gradually migrate into the nearby parenchyma and appear to decrease in number. Here we examined the possible involvement of apoptosis in the regulation of the microglial cell number using Terminal transferase mediated d-UTP Nick End-Labelling (TUNEL). In vitro, cell death is a common phenomenon in microglial cell cultures, and is enhanced by the withdrawal of the mitogen, granulocyte-macrophage colony stimulating factor. In vivo, application of the TUNEL-reaction revealed TUNEL-positive microglia beginning at day 4, with a peak 7 days after transection of the facial nerve. Surprisingly, TUNEL-labelling in vivo was localized on the outer side of the nuclear membrane and in the microglial cytoplasm, with very little staining within the nucleus itself. These TUNEL-labelled cells also lacked other classic morphological signs of apoptosis, like membrane blebbing, chromatin condensation and apop-totic bodies. These data suggest that the regulation of post-mitotic microglia is not mediated by the classic pathway of apoptosis.  相似文献   

13.
Paclitaxel, an anti-microtubule agent, is an effective chemotherapeutic drug in breast cancer. Nonetheless, resistance to paclitaxel remains a major clinical challenge. The need to better understand the resistant phenotype and to find biomarkers that could predict tumor response to paclitaxel is evident. In estrogen receptor α-positive (ER(+)) breast cancer cells, phosphorylation of caveolin-1 (CAV1) on Tyr-14 facilitates mitochondrial apoptosis by increasing BCL2 phosphorylation in response to low dose paclitaxel (10 nM). However, two variants of CAV1 exist: the full-length form, CAV1α (wild-type CAV1 or wtCAV1), and a truncated form, CAV1β. Only wtCAV1 has the Tyr-14 region at the N terminus. The precise cellular functions of CAV1 variants are unknown. We now show that CAV1 variants play distinct roles in paclitaxel-mediated cell death/survival. CAV1β expression is increased in paclitaxel-resistant cells when compared with sensitive cells. Expression of CAV1β in sensitive cells significantly reduces their responsiveness to paclitaxel. These activities reflect an essential role for Tyr-14 phosphorylation because wtCAV1 expression, but not a phosphorylation-deficient mutant (Y14F), inactivates BCL2 and BCLxL through activation of c-Jun N-terminal kinase (JNK). MCF-7 cells that express Y14F are resistant to paclitaxel and are resensitized by co-treatment with ABT-737, a BH3-mimetic small molecule inhibitor. Using structural homology modeling, we propose that phosphorylation on Tyr-14 enables a favorable conformation for proteins to bind to the CAV1 scaffolding domain. Thus, we highlight novel roles for CAV1 variants in cell death; wtCAV1 promotes cell death, whereas CAV1β promotes cell survival by preventing inactivation of BCL2 and BCLxL via JNK in paclitaxel-mediated apoptosis.  相似文献   

14.
The mechanism of cell death which occurs during Chagas' cardiopathy is disputed. To address this issue we analyzed the molecular pathways implicated in the death of cardiomyocytes during T. cruzi invasion and found that they undergo apoptosis during both in vitro and in vivo infections. However, the death rates and onset were related to the parasite stocks belonging to different biodemes, which can be correlated to the different histological inflammation findings that have already been reported. Our in vitro data provide additional support for this hypothesis since higher levels and earlier apoptosis induction were noted during the interaction with the Dm28c (type I) as compared to the Y and CL stocks (type II). Modifications of the surface carbohydrates of the infected cardiomyocytes were observed and these molecular events may be acting as "eat me" tags for their final engulfment by macrophages and/or other non-professional phagocytes. The analysis of other host cell types showed that the in vitro infection of fibroblasts did not result in host apoptosis even when a highly infective stock was used. Conversely, infected macrophages undergo apoptosis but at a higher degree than cardiomyocytes. Apoptotic intracellular parasites were observed to varied extents depending on the T. cruzi stock, which was related to the parasite invasion and proliferation. In summary, our results show that during T. cruzi infection, the extent of apoptosis varies according to the host cell type and the parasite stocks. The apoptosis of both host and T. cruzi can contribute to the silent spreading and persistence of the parasite without triggering an exacerbated inflammatory response.The present study was supported by grants from the Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), the Conselho Nacional Desenvolvimento Científico e Tecnológico (CNPq), INSERM and PAPESIII/FIOCRUZ. Support by the "INSERM-FIOCRUZ convention" is also acknowledged.  相似文献   

15.
During primary viral infection, in vivo exposure to high doses of virus causes a loss of Ag-specific CD8(+) T cells. This phenomenon, termed clonal exhaustion, and other mechanisms by which CTLs are deleted are poorly understood. Here we show evidence for a novel form of cell death in which recently stimulated CD8(+) HIV-1 envelope gp160-specific murine CTLs become apoptotic in vitro after brief exposure to free antigenic peptide (P18-I10). Peak apoptosis occurred within 3 h of treatment with peptide, and the level of apoptosis was dependent on both the time after initial stimulation with target cells and the number of targets. Using T cell-specific H-2D(d)/P18-I10 tetramers, we observed that the apoptosis was induced by such complexes. Induction of apoptosis was blocked by cyclosporin A, a caspase 3 inhibitor, and a mitogen-activated protein kinase inhibitor, but not by Abs to either Fas ligand or to TNF-alpha. Thus, these observations suggest the existence of a Fas- or TNF-alpha-independent pathway initiated by TCR signaling that is involved in the rapid induction of CTL apoptosis. Such a pathway may prove important in the mechanism by which virus-specific CTLs are deleted in the presence of high viral burdens.  相似文献   

16.
The protozoan parasite Cryptosporidium parvum causes persistent diarrhea and malnutrition in children and the diarrhea-wasting syndrome in AIDS. No therapy exists for eliminating the parasite in the absence of a healthy immune response. Although it had been reported that infection of intestinal cell lines with C. parvum leads to host cell death, the mechanisms of cytolysis have not been characterized. We show here that infection with C. parvum leads to typical apoptotic nuclear condensation and DNA fragmentation in host cells. Both nuclear condensation and DNA fragmentation are inhibited by a caspase inhibitor, showing that caspases are involved in this type of apoptosis. Finally, blocking apoptosis with the caspase inhibitor increases the percentage of infected cells, suggesting that parasites may use apoptosis to exit from the infected cell or that the infected cells may eliminate the parasite through apoptosis. These results suggest that apoptosis could be involved in the pathogenesis of C. parvum infections in vivo, and raise the possibility that therapeutic interference with host cell death could alter the course of the pathology in vivo.  相似文献   

17.
Apoptosis: a mechanism of cell killing by influenza A and B viruses.   总被引:19,自引:4,他引:15       下载免费PDF全文
In previous studies, we observed that the virulent avian influenza A virus A/Turkey/Ontario/7732/66 (Ty/Ont) induced severe lymphoid depletion in vivo and rapidly killed an avian lymphocyte cell line (RP9) in vitro. In examining the mechanism of cell killing by this virus, we found that Ty/Ont induced fragmentation of the RP9 cellular DNA into a 200-bp ladder and caused ultrastructural changes characteristic of apoptotic cell death by 5 h after infection. We next determined that the ability to induce apoptosis was not unique to Ty/Ont. In fact, a variety of influenza A viruses (avian, equine, swine, and human), as well as human influenza B viruses, induced DNA fragmentation in a permissive mammalian cell line, Madin-Darby canine kidney (MDCK), and this correlated with the development of a cytopathic effect during viral infection. Since the proto-oncogene bcl-2 is a known inhibitor of apoptosis, we transfected MDCK cells with the human bcl-2 gene; these stably transfected cells (MDCKbcl-2) did not undergo DNA fragmentation after virus infection. In addition, cytotoxicity assays at 48 to 72 h after virus infection showed a high level of cell viability for MDCKbcl-2 compared with a markedly lower level of viability for MDCK cells. These studies indicate that influenza A and B viruses induce apoptosis in cell cultures; thus, apoptosis may represent a general mechanism of cell death in hosts infected with influenza viruses.  相似文献   

18.
Ebola virus (EBOV) causes highly lethal hemorrhagic fever that leads to death in up to 90% of infected humans. Like many other infections, EBOV induces massive lymphocyte apoptosis, which is thought to prevent the development of a functional adaptive immune response. In a lethal mouse model of EBOV infection, we show that there is an increase in expression of the activation/maturation marker CD44 in CD4(+) and CD8(+) T cells late in infection, preceding a dramatic rebound of lymphocyte numbers in the blood. Furthermore, we observed both lymphoblasts and apoptotic lymphocytes in spleen late in infection, suggesting that there is lymphocyte activation despite substantial bystander apoptosis. To test whether these activated lymphocytes were functional, we performed adoptive transfer studies. Whole splenocytes from moribund day 7 EBOV-infected animals protected naive animals from EBOV, but not Marburgvirus, challenge. In addition, we observed EBOV-specific CD8(+) T cell IFN-gamma responses in moribund day 7 EBOV-infected mice, and adoptive transfer of CD8(+) T cells alone from day 7 mice could confer protection to EBOV-challenged naive mice. Furthermore, CD8(+) cells from day 7, but not day 0, mice proliferated after transfer to infected recipients. Therefore, despite significant lymphocyte apoptosis, a functional and specific, albeit insufficient, adaptive immune response is made in lethal EBOV infection and is protective upon transfer to naive infected recipients. These findings should cause a change in the current view of the 'impaired' immune response to EBOV challenge and may help spark new therapeutic strategies to control lethal filovirus disease.  相似文献   

19.
20.
Sympathetic neurons depend on nerve growth factor (NGF) for their survival both in vivo and in vitro. In culture, the neurons die after NGF withdrawal by an autonomous cell death program but whether these neurons die by apoptosis is under debate. Using vital DNA stains and in situ nick translation, we show here that extensive chromatin condensation and DNA fragmentation occur before plasma membrane breakdown during the death of NGF-deprived rat sympathetic neurons in culture. Furthermore, kinetic analysis of chromatin condensation events within the cell population is consistent with a model which postulates that after NGF deprivation nearly all of the neurons die in this manner. Although the dying neurons display membrane blebbing, cell fragmentation into apoptotic bodies does not occur. Apoptotic events proceed rapidly at around the time neurons become committed to die, regardless of neuronal culture age. However the duration of NGF deprivation required to commit neurons to die, and the rate at which apoptosis occurs, increase with culture age. Thus, within the first week of culture, apoptosis is the predominant form of cell death in sympathetic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号