首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A facile synthesis of 7-amino-5-chloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5-chloroformycin A, 6), 7-amino-5-chloro-3-(2-deoxy-beta-D-erythro-pentofuranosyl) pyrazolo [4,3-d]-pyrimidine (5-chloro-2'-deoxyformycin A, 13) and certain related 5,7-disubstituted pyrazolo[4,3-d]pyrimidine ribonucleosides is described starting with formycin A. Thiation of tri-O-acetyloxoformycin B (4b) with phosphorus pentasulfide, followed 3-beta-D-ribofuranosyl-7-thioxopyrazolo[4,3-d] pyrimidin-5(1H,4H,6H)-one (3b) in excellent yield. Chlorination of 4b with either phosphorus oxychloride or phenyl phosphonicdichloride furnished the key intermediate 5,7-dichloro-3-(2,3, 5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo[4,3-d]pyrimidine (5a), which on deacetylation afforded 5,7-dichloro-3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine (5b). Ammonolysis of 5a with liquid ammonia gave 6, whereas with MeOH/NH3, a mixture of 6 and 7-methoxy-5-chloro-3-beta-D-ribofuranosylpyrazolo[4,3-d]pyrimidine (7) was obtained. Reaction of 6 with lithium azide and subsequent hydrogenation afforded 5-aminoformycin A (10). Treatment of 5a with thiourea gave 5-chloro-3-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl) pyrazolo[4,3-d]pyrimidine-7(1H,6H)-thione (8a), which on further reaction with sodium hydrosulfide furnished 3-beta-D-ribofuranosylpyrazolo [4,3-d]pyrimidine-5,7(1H,4H,6H)-dithione (11). The four-step deoxygenation procedure using phenoxythiocarbonylation of the 2'-hydroxy group of the 3', 5'-protected 6 gave 5-chloro-2'-deoxyformycin A (13).  相似文献   

2.
The synthesis of pyrazolo[4,3-d]pyrimidine nucleoside library using solid-phase parallel synthesis methodology is described. Glycosylation of the trimethylsilyl (TMS) derivative of 1- and 2-(methyl)-1H and 2H-pyrazolo[4,3-d]pyrimidine-5,7-(4H, 6H)-dione (5) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of TMS triflate provided two novel protected nucleosides 6 and 7. The structures of 6 and 7 were assigned by 1H and 2D NMR experiments. Nucleosides 6 and 7 were then transformed to the key intermediates 12 and 15 respectively. Reaction of 12 and 15 with MMTCl resin in the presence of 2,6-lutidine afforded the necessary scaffolds B and C. Different amines (96) were introduced selectively by nucleophilic substitution on scaffolds B and C using solid-phase parallel semi-automated synthesizer. Cleavage of the products from the solid support with 30% HFIP in a parallel fashion yielded nucleoside libraries simultaneously, and they were analyzed and characterized by high-throughput LC-MS.  相似文献   

3.
Biochemical genetic analysis of formycin B action in Leishmania donovani   总被引:1,自引:0,他引:1  
Formycin B is cytotoxic toward Leishmania and is a potential chemotherapeutic agent for leishmaniasis. In order to determine the mechanism of action of formycin B, we have isolated and characterized clonal populations of formycin B-resistant Leishmania donovani. These formycin B-resistant clones are also cross-resistant to formycin A and allopurinol riboside-mediated growth inhibition. Incubation of the formycin B-resistant cells with [3H]formycin B indicates that, unlike wild type cells, the resistant populations cannot accumulate phosphorylated metabolites of exogenous [3H]formycin B. This is due to a defective transport system for formycin B in the resistant cells. However, wild type and mutant cells incorporate [3H]formycin A equally efficiently into [3H]formycin A-containing nucleotides and into RNA. These data suggest that formycin B cytotoxicity in Leishmania is not mediated by its incorporation as the adenosine analog into RNA. A plausible alternative hypothesis is proposed for the mechanism of action of the pyrazolo (4,3-d)pyrimidine C-nucleosides based upon depletion of an essential intracellular metabolite.  相似文献   

4.
The glycosylation of 4,6-dichloropyrazolo[3,4-d]pyrimidine and 4-chloro-6-methylthiopyrazolo[3,4-d]pyrimidine via the corresponding trimethylsilyl intermediate and tetra-O-acetyl-beta-D-ribofuranose in the presence of trimethylsilyl triflate as a catalyst, gave selective glycosylation at N1 as the only nucleoside product. The intermediates 4,6-dichloro-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 7 and 4-chloro-6-methylthio-1-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)pyrazolo [3,4-d]pyrimidine 13 gave new and convenient synthetic routes to the inosine analog 1, the guanosine analog 2, the adenosine analog 3, and the isoguanosine analog 16. Glycosylation of the trimethylsilyl derivative of 6-chloropyrazolo[3,4-d]pyrimidine-4-one unexpectedly gave the N2-glycosyl isomer 20 as the major product. A number of new 4,6-disubstituted pyrazolo[3,4-d]pyrimidine nucleosides were prepared from these glycosyl intermediates.  相似文献   

5.

The synthesis of pyrazolo[4,3-d]pyrimidine nucleoside library using solid-phase parallel synthesis methodology is described. Glycosylation of the trimethylsilyl (TMS) derivative of 1- and 2-(methyl)-1H and 2H-pyrazolo[4,3-d]pyrimidine-5,7-(4H,6H)-dione (5) with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose in the presence of TMS triflate provided two novel protected nucleosides 6 and 7. The structures of 6 and 7 were assigned by 1H and 2D NMR experiments. Nucleosides 6 and 7 were then transformed to the key intermediates 12 and 15 respectively. Reaction of 12 and 15 with MMTCl resin in the presence of 2,6-lutidine afforded the necessary scaffolds B and C. Different amines (96) were introduced selectively by nucleophilic substitution on scaffolds B and C using solid-phase parallel semi-automated synthesizer. Cleavage of the products from the solid support with 30% HFIP in a parallel fashion yielded nucleoside libraries simultaneously, and they were analyzed and characterized by high-throughput LC-MS.  相似文献   

6.
The conditions under which the fluorescent pyrazolopyrimidine nucleotide formycin A triphosphate (7-amino-3-(beta-D-(5'- tripolyphosphate)ribofuranosyl)pyrazolo[4,3-d]pyrimidine, FTP) forms a 1:1 complex in solution with Tb3+ have been characterized. The complex has a dissociation constant of approx. 10(-7) M. Within the complex, the luminescence of Tb3+ is dramatically sensitized by energy transfer from formycin. The value for 50% transfer efficiency, F?rster's R0 (F?rster, T. (1964) in Modern Quantum Chemistry (Sinanoglu, O., ed.), pp. 93-137, Academic Press, New York) was determined to be 3.34 +/- 0.4 A, and the effective distance between the donor and acceptor transition dipoles, R, in the complex was estimated to be 6.6 +/- 1.0 A. The quantum yield of Tb3+ in the complex is sensitive to the number of O-H oscillators bound to the Tb3+, which allows determination of the number of waters bound to it (approx. 4). Preliminary results show that the complex binds to the phosphoryl transfer enzyme hexokinase in the presence of the glucose analogs N-acetylglucosamine, frucose and xylose, which are not phosphorylated by the enzyme. The binding occurs with a loss of energy efficiency consistent with a new distance from the effective transition dipole of formycin to that of terbium of approx. 9.6 A. The FTP-terbium complex can be used as both a spectroscopic and an X-ray diffraction probe. Studies with this compound should be most valuable for correlating solution and crystallographic data.  相似文献   

7.
(3-tert-Butyl-7-(5-methylisoxazol-3-yl)-2-(1-methyl-1H-1,2,4-triazol-5-ylmethoxy)pyrazolo[1,5-d][1,2,4]triazine (1) was recently identified as a functionally selective, inverse agonist at the benzodiazepine site of GABA(A) alpha5 receptors and enhances performance in animal models of cognition. The routes of metabolism of this compound in vivo in rat have been well characterised, the identities of the major metabolites are confirmed by synthesis and their biological profiles were evaluated. An unusual oxidation of the pyrazolo[1,5-d][1,2,4]triazine core to the corresponding pyrazolo[1,5-d][1,2,4]triazin-4(5H)-one scaffold by aldehyde oxidase has been observed.  相似文献   

8.
Polyclonal antibodies to homogeneous preparation of adenosine kinase from Leishmania donovani were raised in rabbit. The antiserum was inhibitory and precipitated enzyme activity from both homogeneous and partially purified adenosine kinase from the parasite. However, the antiserum did not immunoprecipitate adenosine kinase of other higher eukaryotic sources tested so far. Immunoblot analysis of extracts from L. donovani and other sources revealed specific reaction of the antiserum with only the parasite enzyme. Under similar conditions, the enzyme monophosphorylated adenosine and 7-amino-3[beta-D-ribofuranosyl]-1H-pyrazolo[4,3-d]pyrimidine (formycin A) with almost equal efficiency, exhibiting Km values of 16 and 24 microM, respectively. The turnover number (Kcat) of the enzyme with both adenosine and formycin A was 24 s-1, whereas Kcat/Km yielded values of 1.5 and 1.0 microM-1 s-1, respectively. Substrate competition experiments indicated strong inhibition of [3H]formycin A phosphorylation by adenosine. In contrast, [3H]adenosine phosphorylation was insensitive to formycin A except at very high concentrations. The inhibitions of [3H]formycin A and [3H]adenosine phosphorylation by adenosine and formycin A were noncompetitive with respect to each other. Of the two nucleosides, adenosine was found to be effective in eluting the enzyme from the 5'-AMP Sepharose 4B column. Phosphorylation of [3H]formycin A was strongly inhibited by N-ethylmaleimide at concentrations which exerted minimal effect on [3H]adenosine phosphorylation. Adenosine exclusively, but not formycin A, protected the enzyme from N-ethylmaleimide-mediated inactivation. Taken together the results suggest that (a) adenosine kinase from L. donovani is immunologically distinct and (b) the enzyme possibly has two discrete catalytically active nucleoside interacting sites.  相似文献   

9.
The reaction of 4-hydrazino-8-(trifluoromethyl)quinoline (2) with ethoxymethylenecyanoacetate afforded ethyl 5-amino-1-[8-(trifluoromethyl)quinolin-4-yl]-1H-pyrazole-4-carboxylate (3) and that with ethoxymethylenemalononitrile afforded 5-amino-1-[8-(trifluoromethyl)quinolin-4-yl]-1H-pyrazole-4-carbonitrile (5). Compounds 3 and 5 were hydrolyzed to get 5-amino-1-[8-(trifluoromethyl)quinolin-4-yl]-1H-pyrazole-4-carboxylic acid and then reacted with acetic anhydride to afford 6-methyl-1-[8-(trifluoromethyl)quinolin-4-yl]pyrazolo[3,4-d]oxazin-4-one (6), which was condensed with different aromatic amines to give a series of 5-substituted 6-methyl-1-[8-(trifluoromethyl)quinolin-4-yl]-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-ones (7). Compounds 3 and 5 also reacted with formamide, urea, and thiourea affording the corresponding pyrazolo[3,4-d]pyrimidines (8-13), respectively. Structures of the products have been determined by chemical reactions and spectral studies. All compounds of the series have been screened for their antibacterial and antifungal activity studies. The results are summarized in Tables 1 and 2.  相似文献   

10.
The capacity of 54 different pyrazolo(3,4-d)- or pyrazolo(4,3-d)pyrimidine derivatives to inhibit the multiplication of Trypanosoma rangeli culture forms was evaluated. Among pyrazolo(3,4-d)pyrimidines, 14 derivatives showed trypanostatic activity, 4-aminopyrazolo-(3,4-d)pyrimidine (APP) being the most active, with 4-hydroxypyrazolo(3,4-d)pyrimidine (HPP) lacking trypanostatic activity. 7-Hydroxy-3-beta-D-ribofuranosylpyrazolo(4,3-d)pyrimidine (FoB) was as active as 7-amino-3-beta-D-ribofuranosylpyrazolo(4,3-d)pyrimidine (FoA), both compounds being five-fold less inhibitory than APP. It can be concluded that, regarding T. rangeli, the chemical analogy to hypoxanthine or inosine of pyrazolo(3,4-d)- and pyrazolo(4,3-d)pyrimidine, respectively, is not absolutely critical, as different modifications on the heterocyclic ring did not abolish the inhibitory activity of these compounds.  相似文献   

11.
Formycin B, a pyrazolo(4,3-d)pyrimidine C-nucleoside, inhibited the growth of Leishmaniadonovani promastigotes in culture with an ED90 of 0.2 μg/ml. Promastigotes incubated for 24 hrs with Formycin B at 10 μg/ml were found to convert it to the ribonucleotide, formycin B 5′-monophosphate. The parasites were also capable of aminating formycin B 5′-monophosphate as evidenced by the appearance of formycin A di- and triphosphate. The RNA contained the formycin A moiety in 3′,5′-polynucleotide linkage. Succino-AMP synthetase from these parasites was able to use formycin B 5′-monophosphate as an alternate-substrate with a K'm of 26 μM and a V'm of about 1% the V'm IMP. Formycin B 5′-monophosphate was also a substrate for mammalian succino-AMP synthetase with a Vm' of 40% the Vm' of IMP.  相似文献   

12.
Synthesis and biological evaluation of a new series of structurally unrestricted and intramolecular hydrogen bond restricted derivatives of 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines (angular tricyclics) and 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[4,3-d]pyrimidines (linear tricyclics) are described. Structurally restricted derivatives are highly potent and selective blockers of 5-HT(6) receptors with little difference between angular or linear shape of the tricyclic core, the angular species being only slightly more potent. The angular representative of 3-(phenylsulfonyl)pyrazolo[1,5-a]pyrido[3,4-e]pyrimidines, 5, can be considered as more favorable candidate for further development as it shows only weak 5-HT(2B) blocking activity (IC(50)=6.16 μM as compared with IC(50)=1.8 nM for 5-HT(6) receptors) and very low hERG potassium channel blocking potency (IC(50)=54.2 μM). The linear analog, 11, is less favorable as while showing no binding to the 5-HT(2B) receptor at concentrations of up to 10 μM, it exhibits quite a high potency to block the hERG channel (IC(50)=0.5 μM).  相似文献   

13.
3-Aryl pyrazolo[4,3-d]pyrimidine derivatives: Nonpeptide CRF-1 antagonists   总被引:1,自引:0,他引:1  
The synthesis of a series of 3-aryl pyrazolo[4,3-d]pyrimidines as potential corticotropin-releasing factor (CRF-1) antagonists is described. The effects of substitution on the aromatic ring, the amino group and the pyrazolo ring on CRF-1 receptor binding were investigated.  相似文献   

14.
An efficient and novel method for the preparation of spiro[pyrazolo[4,3-d]pyrimidin]-7′(1′H)-ones by the condensation of 4-amino-1-methyl-3-propylpyrazole-5-carboxamide with ketones under mild conditions using catalytic InCl3 was reported. This method has been extended for the synthesis of novel spiro[benzo[4,5]thieno[2,3-d]pyrimidine-2,3′-indoline]-2′,4(3H)-dione which are having potential applications in medicinal chemistry. All the synthesized compounds were evaluated for their anti-proliferative properties in vitro against cancer cell lines and several compounds were found to be active. Further in vitro studies revealed that inhibition of sirtuins could be the possible mechanism of action of these molecules.  相似文献   

15.
Eighteen pyrazolo[4,3-b]oleanane derivatives have been synthesized and biologically evaluated as inhibitors of rabbit muscle GPa. Key compound 5 was readily obtained in four steps starting from oleanolic acid (OA; 1). Further modification based on pyrazolo triterpene 5 resulted in 17 novel pyrazolo pentacyclic triterpenes. All of the synthesized pyrazolo[4,3-b]oleanane derivatives were biologically assayed against rabbit muscle GPa. Within this series of compounds, pyrazole triterpene 19 (IC(50)=9.9 microM) exhibited more potent activity than the parent compound 1. Preliminary structure-activity relationship analysis of the pyrazolo[4,3-b]oleanane derivatives as GPa inhibitors is discussed.  相似文献   

16.
The capacity of 54 different pyrazolo-(3,4-d)- or -(4,3-d)-pyrimidine derivatives to inhibit American Leishmania promastigote multiplication was evaluated. Among pyrazolo-(3,4-d)-pyrimidines, eight derivatives showed leishmanistatic activity, 4-aminopyrazolo-(3,4-d)-pyrimidine (APP) being the most active, about eight-fold more than 4-hydroxy-pyrazolo-(3,4-d)-pyrimidine (HPP). 7-Hydroxy-3-beta-D-ribofuranosylpyrazolo-(4,3-d)-pyrimidine (FoB) was as active as 7-amino-3-beta-D-ribofuranosylpyrazolo-(4,3-d)-pyrimidine (FoA), a situation different to that found for pyrazolo-(3,4-d)-pyrimidines. Furthermore, different chemical modifications in formycin structure did not modify inhibitory effects. It can be concluded that regarding American Leishmania the chemical analogy to hypoxanthine or inosine of pyrazolo-(3,4-d)- and pyrazolo-(4,3-d)-pyrimidine, respectively, is not absolutely critical, as different modifications on the heterocyclic ring did not abolish the inhibitory activity of these compounds.  相似文献   

17.
Abstract

A synthesis of 4,6-dimethylthio-1-(2-deoxy-β-D-erythro-pentofuranosyl)pyrazolo[3,4-d]pyrimidine-3-carbonitrile (4) is described using the stereospecific sodium salt glycosylation procedure. Condensation of the sodium salt of 4,6-dimethylthiopyrazolo[3,4-d]pyrimidine-3-carbonitrile (1) with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-eythro-pentofuranose (2) gave exclusively the corresponding blocked nucleoside (3) with β-anomeric configuration, which on deprotection provided 2′-deoxyriboside 4. Aglycone functional groups transformations of 4 led to related 3,4,6-trisubstituted pyrazolo[3,4-d]pyrimidine-2′-deoxynucleosides. These compounds are devoid of any significant cytotoxic activity in vitro.  相似文献   

18.
The capacity of 54 different pyrazolo(3,4-d) or (4,3-d)pyrimidine derivatives to inhibit Trypanosoma cruzi epimastigote and trypomastigote multiplication, and for some of them its chemotherapeutic activity, was evaluated. Six pyrazolo(3,4-d)pyrimidines showed inhibitory activity against epimastigote forms, 4-aminopyrazolo(3,4-d)pyrimidine being the most active, 5-fold more so than 4-hydroxypyrazolo(3,4-d)-pyrimidine. Neither compound was active against freshly isolated trypomastigotes, suggesting biochemical differences between culture and bloodstream forms of T. cruzi. On both epimastigote and trypomastigote forms, 7-amino-3-beta-D-ribofuranosylpyrazolo-(4,3-d)pyrimidine (FoA) was about 2-fold more active than 7-hydroxy-3-beta-D-ribofuranosylpyrazolo-(4,3-d)pyrimidine (FoB); however, when tested on T. cruzi-infected mice, only FoB exhibited significant chemotherapeutic activity. Previous results suggest that, except for FoB and FoA: (a) pyrazolopyrimidine insensitivity is trypomastigote-specific and (b) drug-insensitivity is lost when trypomastigotes transform into epimastigotes and vice versa.  相似文献   

19.
The microwave-assisted synthesis and characterization of the ten new sildenafil (Viagra; 1) analogues 6-15 are described. A detailed structure-activity-relationship (SAR) study revealed that compounds 10 (= 4-ethoxy-N-hydroxy-3-(7-methoxy-1-methyl-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)benzenesulfonamide) and 12 (= S-(2-hydroxyethyl) 4-ethoxy-3-(7-methoxy-1-methyl-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-5-yl)benzenesulfonothioate) are extremely potent mushroom tyrosinase inhibitors, with IC50 values (3.59 and 2.15 microM, resp.) below those of the standard inhibitors L-mimosine and kojic acid (IC50 = 3.68 and 16.67 microM, resp.). Compounds 10 and 12 are, thus, the currently most-effective inhibitors of tyrosinase, and bear great potential to be used for the treatment of various skin disorders such as hyperpigmentation, which is associated with high production of melanocytes.  相似文献   

20.
Several new pyrazolo[4,3-c]quinolin-3-one ribonucleosides (5a-g) and their corresponding heterocycle moieties (3a-g) were synthesized and evaluated against vaccinia virus (VV) and herpes simplex virus type 1 (HSV-1). The derivatives 3c and 3d showed modest inhibitory activity against vaccinia virus reaching 70% at a concentration of 100 microM. All heterocyclic compounds (3a-f) showed a modest inhibition against HSV-1, reaching the maximal inhibitory effect around 20-30%. The antiviral effects of most of the pyrazolo[4,3-c]quinolin-3-one ribonucleosides (5a-f) on VV and HSV were not impressive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号