首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baculovirus infected insect cells are widely used for heterologous protein expression. Despite the power of this system, the use of baculovirus techniques for protein expression screening is hampered by the time and resources needed to generate each recombinant baculovirus. Here, we show that a transfection/infection based expression system is suitable for screening of expression constructs in insect cells and represents a valid alternative to other traditional screening methodologies using recombinant baculovirus. The described method is based on gene delivery by transfection coupled to the induction of protein expression by non-recombinant baculovirus infection. Vectors that control expression by a combination of the baculovirus promoters ie1 and p10 and the enhancer element hr5 are among the ones suitable for this method. Infection with non-recombinant baculovirus drastically increases the basal activity of these elements, leading to protein over-expression. Multiple vectors can be simultaneously co-transfected/infected, making transfection/infection amenable for screening of multiple co-expressed proteins and protein complexes. Taken together, our results prove that the transfection/infection protocol is a valid and innovative approach for increasing speed and reducing costs of protein expression screening for structural and functional studies.  相似文献   

2.
Modelling baculovirus infection of insect cells in culture   总被引:1,自引:0,他引:1  
Power JF  Nielsen LK 《Cytotechnology》1996,20(1-3):209-219
Conclusions Infection of insect cells with baculovirus is a potentially attractive means for producing both viral insecticides and recombinant proteins. The continuation of mathematical modelling studies such as those reviewed in this paper are essential in order to realise the full potential of the system. Through mathematical models it is possible to predict complex behaviours such as those observed when infecting cells at low MOI or when propagating virus in a continuous culture system. A purely empirical analysis of the same phenomena is very difficult if not impossible.The present three models are — despite their complexity and the effort that has gone into developing them — all first generation models. They summarise, to a large extent, our present quantitative understanding of the interaction between baculovirus and insect cells, when looked upon as a black box system. The binding and initial infection processes are still quantitatively poorly understood and further work in this area is much needed. On the longer term, a second generation of models is likely to consider interior processes such as viral DNA and RNA accumulation in much more detail using a structured model of the infection cycle.  相似文献   

3.
4.
5.
The expression efficiency of the insect cells-baculovirus system used for insecticidal virus production and the expression of medically useful foreign genes is closely related with the dynamics of infection. The present studies develop a model of the dynamic process of insect cell infection with baculovirus at low multiplicity of  相似文献   

6.
A mathematical model has been developed to describe the growth and infection of insect cells by recombinant baculoviruses. The model parameters were determined from a series of independent experiments involving batch suspension culture. The profiles generated by the model for cell growth, virus production and protein production agree with those observed in experiments. Presently, the model simulates only systems where cells are not growth-limited. The model is useful in aiding the design and optimization of large-scale systems for production of biological insecticides as well as recombinant proteins and in delineating those areas which are limiting the process and require further, more fundamental, investigation.  相似文献   

7.
In vitro infection of insect cells with baculoviruses is increasingly considered a viable means for the production of biopesticides, recombinant veterinary vaccines, and other recombinant products. Batch fermentation processes traditionally employ intermediate to high multiplicities of infection necessitating two parallel scale-up processes-one for cells and one for virus. In this study, we consider the use of multiplicities of infection as low as 0.0001 plaque-forming units per cell, a virus level low enough to enable infection of even large reactors (e.g., 10 m(3)) directly from a frozen stock. Using low multiplicities in the Sf9/beta-gal-AcNPV system, recombinant protein titers comparable with the maximum titer observed in high multiplicity infections were achieved. Cultures yielding the maximum titer were characterized by reaching a maximum cell density between 3 and 4 x 10(9) cell L(-1). This optimal cell yield did not depend on the multiplicity of infection, supporting the existing view that batch cultures are limited by availability of substrate. Up to a certain cell density, product titer will increase almost linearly with availability of biocatalyst, that is, cells. Beyond this point any further cell formation comes at the expense of final product titer. Low multiplicity infections were found not to cause any significant dispersion of the protein production process. Hence, product stability is not a major issue of concern using low multiplicities of infection. The sensitivity to initial conditions and disturbances, however, remains an issue of concern for the commercial use of low multiplicity infections. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
A cDNA fragment coding for human c-myc was inserted into the genome of the baculovirus Autographa californica nuclear polyhedrosis virus adjacent to the strong polyhedrin promoter. Insect cells infected with the recombinant virus produced significant amounts of c-myc protein, which constituted the major phosphoprotein component in these cells. By immunoprecipitation and immunoblot analysis, two proteins of 61 and 64 kilodaltons were detected with c-myc-specific antisera. The insect-derived proteins were compared with recombinant human c-myc-encoded proteins synthesized in Escherichia coli and Saccharomyces cerevisiae cells. The c-myc gene product was found predominantly in the nucleus by subcellular fractionation of infected insect cells.  相似文献   

9.
Hu YC  Wang MY  Bentley WE 《Cytotechnology》1997,24(2):143-152
A continuous process of insect cell (S f9) growth and baculovirus infection is tested with the sequential combination of a CSTR and a tubular reactor. A tubular infection reactor enables continuous introduction of baculovirus and therefore avoids the ‘passage effect’ observed in two-stage CSTR systems. Moreover, a tubular reactor can be used to test cell infection kinetics and the subsequent metabolism of infected insect cells. Unlike batch and CSTR culture, cells in a horizontally positioned tubular reactor settle due to poor mixing. We have overcome this problem by alternately introducing air bubbles and media and by maintaining a linear velocity sufficient to keep cells suspended. This article addresses the development of the tubular reactor and demonstrates its use as an infection system that complements the two-stage CSTR. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
11.
12.
Since the number of potential drug targets identified has significantly increased in the past decade, rapid expression of recombinant proteins in sufficient amounts for structure determination and modern drug discovery is one of the major challenges in pharmaceutical research. As a result of its capacity for insertion of large DNA fragments, its high yield of recombinant protein and its high probability of success compared to protein expression in Escherichia coli, the baculovirus expression vector system (BEVS) is used routinely to produce recombinant proteins in the milligram scale. For some targets, however, expression of the recombinant protein with the BEVS in insect cells fails and mammalian expression systems have to be used to achieve proper post-translational processing of the nascent polypeptide. We now introduce a modified BEVS as a very useful tool for simultaneously testing the expression of target proteins in both insect and mammalian cells by using baculovirus infection of both host systems. The expression yields in insect cells are comparable to those obtained with state-of-the-art baculovirus vectors, such as the Bac-to-Bac system. Using the same virus, we can transduce mammalian cells to quickly assess target gene expression feasibility and optimize expression conditions, eliminating additional cloning steps into mammalian expression vectors. This reduces time and effort for finding appropriate expression conditions in various hosts.  相似文献   

13.
The influence of various culture parameters on the attachment of a recombinant baculovirus to suspended insect cells was examined under normal culture conditions. These parameters included cell density, multiplicity of infection, and composition of the cell growth medium. It was found that the fractional rate of virus attachment was independent of the multiplicity of infection but dependent on the cell density. A first order mathematical model was used to simulate the adsorption kinetics and predict the efficiency of virus attachment under the various culture conditions. This calculated efficiency of virus attachment was observed to decrease at high cell densities, which was attributed to cell clumping. It was also observed that virus attachment was more efficient in Sf900II serum free medium than it was in IPL-41 serum-supplemented medium. This effect was attributed to the protein in serum which may coat the cells and so inhibit adsorption. A general discussion relating the observations made in-these experiments to the kinetics of recombinant baculovirus adsorption to suspended insect cells is presented.  相似文献   

14.
The production of viral vectors or virus-like particles for gene therapy or vaccinations using the baculovirus expression system is gaining in popularity. Recently, reports of a viral vector based on adeno-associated virus (AAV) produced in insect cells using the baculovirus expression vector system have been published. This system requires the triple infection of cells with baculovirus vectors containing the AAV gene for replication proteins (BacRep), the AAV gene for structural proteins (BacCap), and the AAV vector genome (BacITR). A statistical approach was used to investigate the multiplicities of infection of the three baculoviruses and the results were extended to the production of AAVs containing various transgenes. Highest AAV yields were obtained when BacRep and BacCap, the baculovirus vectors containing genes that code for proteins necessary for the formation of the AAV vector, were added in equal amounts at high multiplicities of infection. These combinations also resulted in the closest ratios of infectious to total AAV particles produced. Overexpression of the AAV structural proteins led to the production of empty AAV capsids, which is believed to overload the cellular machinery, preventing proper encapsidation of the AAV vector transgene, and decreased the viability of the insect cells. Delaying the input of BacCap, to reduce the amount of capsids produced, resulted in lower infectious AAV titers then when all three baculoviruses were put into the system at the same time. The amount of BacITR added to the system can be less than the other two without loss of AAV yield.  相似文献   

15.
T Urakawa  D G Ritter    P Roy 《Nucleic acids research》1989,17(18):7395-7401
The bluetongue virus core particles have been shown to contain an RNA-directed RNA polymerase (1). To identify the protein responsible for the virion RNA polymerase activity, the complete 3.9 Kb DNA clone representing the largest RNA segment 1 (L1) of bluetongue virus (BTV-10) was placed under control of the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV). The derived recombinant virus was used to infect Spodoptera frugiperda cells. As demonstrated by stained polyacrylamide gel electrophoresis and by the use of bluetongue virus antibody, infected insect cells synthesized the largest protein of BTV-10 (VP1, 150 k Da). Antibody raised in rabbit to recombinant VP1 protein recognized bluetongue virus VP1 protein. The recombinant virus infected cell lysate had significantly inducible levels of RNA polymerase enzymatic activity as determined by a poly (U)-oligo (A) polymerase assay. The availability of enzymatically active bluetongue virus RNA polymerase provides a system in which we can precisely delineate the role this protein plays in the regulation of bluetongue replication.  相似文献   

16.
The baculovirus expression vector system was employed to produce human apolipoprotein E and β-galactosidase in order to study the effect of multiplicity of infection on secreted and non-secreted recombinant protein production. Prior knowledge of the influence of other cell culture and infection parameters, such as the cell density at time of infection and the time of harvest, allowed determination of the direct and indirect influences of multiplicity of infection on recombinant protein synthesis and degradation in insect cells. Under non-limited, controlled conditions, the direct effect of multiplicity of infection (10−1−10 pfu/cell) on specific recombinant product yields of non-secreted β-galactosidase was found to be insignificant. Instead, the observed increased in accumulated product was directly correlated to the total number of infected cells during the production period and therefore ultimately dependent on an adequate supply of nutrients. Only the timing of recombinant virus and protein production was influenced by, and dependent on the multiplicity of infection. Evidence is presented in this study that indicates the extremely limited predictability of post-infection cell growth at very low multiplicities of infection of less than 0.1 pfu/cell. Due to the inaccuracy of the current virus quantification techniques, combined with the sensitivity of post-infection cell growth at low MOI, the possibility of excessive post-infection cell growth and subsequent nutrient limitation was found to be significantly increased. Finally, as an example, the degree of product stability and cellular and viral protein contamination at low multiplicity of infection is investigated for a secreted recombinant form of human apolipoprotein E. Comparison of human apolipoprotein E production and secretion at multiplicities of infection of 10−4−10 pfu/cell revealed increased product degradation and contamination with intracellular proteins at low multiplicities of infection. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
In this communication we report the infection of armyworm Spodoptera frugiperda IPLB-Sf- 21 cells with Anticarsia gemmatalis multicapsid nucleopolyhedrovirus at low multiplicity of infection (MOI). The temporal variation of the extra-cellular virus and of the unstained cell was followed. The series of peaks in the virus concentration and the unstained cells count were used in order to infer the dynamic mechanism of the infection at low MOI. This mechanism can be used as the basis for the future formulation of a mathematical model of the process.  相似文献   

18.
The expression of recombinant proteins in their native state has become a prerequisite for a variety of functional and structural studies, as well as vaccine development. Many biochemical properties and functions of proteins are dependent on or reside in posttranslational modifications, such as glycosylation. The baculovirus system has increasingly become the system of choice due to it capabilities of performing posttranslational modifications and usually high yields of recombinant proteins. The Toxoplasma gondii surface antigen SAG1 was used as a model for a glycosylphosphatidyl-inositol (GPI)-anchored protein and expressed in insect cells using the baculovirus system. We show that the T. gondii SAG1 surface antigen expressed in this system was not modified by a GPI-anchor. In vitro and in vivo studies demonstrate that uninfected insect cells are able to produce GPI-precursors and to transfer a mature GPI-anchor to nascent proteins. These cells however are not capable to produce GPI-precursors following infection. We also show that the biosynthesis of the early GPI intermediate GlcNH(2)-PI is blocked in baculovirus-infected H5 cells, thus preventing the subsequent mannosylation steps for the synthesis of the conserved GPI-core-glycan. We therefore conclude that the baculovirus system is not appropriate for the expression of GPI-anchored proteins.  相似文献   

19.
Insect cells are widely used for expression of a variety of different proteins by using the baculovirus expression system. The applicability of this system depends on production of proteins which have biological properties similar to their native counterparts. One application has been the expression of viral capsid proteins and their assembly into empty capsid structures to provide new viral immunogens which retain complex antigenic sites. An important parameter for efficient folding and assembly of proteins into viral procapsids may be the intracellular pH, particularly for acid-labile particles such as foot-and-mouth disease virus (FMDV). Benzoic acid was used as an effective indicator of intracellular pH in insect cells and 3-O-methyl glucose to measure cell volumes. We have determined the intracellular volume of theSpodoptera frugiperda IPLB-Sf21 insect cells 0.50±0.08 pL per cell. Using the distribution of [14C]-benzoic acid, we show that the intracellular pH remains constant at pH 7.0 when the cells are grown in media with pH values ranging from 6.2 to 6.8 and, moreover, is not affected by baculovirus infection. These results suggest that insect cells are suitable to express and produce acid-labile structures via the baculovirus expression system and that assembly of proteins and viral procapsids could occur.  相似文献   

20.
TAR RNA-binding protein TRBP was originally isolated by its binding affinity for radiolabeled HIV-1 leader RNA. Subsequent studies have suggested that this protein is one member of a family of double-stranded RNA-binding proteins. Recent findings indicate that TRBP might function to antagonize the translational inhibitory effect that can be mediated through cellular protein kinase, PKR. Here, we report on the over-expression of a cDNA coding for TRBP in eukaryotic SF9 cells using baculovirus. We characterized the nuclear localization of TRBP in insect cells, and we demonstrate that TRBP co-immunoprecipitates with a protein in these cells antigenically related to human PKR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号