首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of sleep influences on human pharyngeal and other respiratory muscles suggest that the activity of these muscles may be affected by non-rapid-eye-movement (NREM) sleep in a nonuniform manner. This variable sleep response may relate to the pattern of activation of the muscle (inspiratory phasic vs. tonic) and peripheral events occurring in the airway. Furthermore, the ability of these muscles to respond to respiratory stimuli during NREM sleep may also differ. To systematically investigate the effect of NREM sleep on respiratory muscle activity, we studied two tonic muscles [tensor palatini (TP), masseter (M)] and two inspiratory phasic ones [genioglossus (GG), diaphragm (D)], also measuring the response of these muscles to inspiratory resistive loading (12 cmH2O.l-1.s) during wakefulness and NREM sleep. Seven normal male subjects were studied on a single night with intramuscular electrodes placed in the TP and GG and surface electrodes placed over the D and M. Sleep stage, inspiratory airflow, and moving time average electromyograph (EMG) of the above four muscles were continuously recorded. The EMG of both tonic muscles fell significantly (P less than 0.05) during NREM sleep [TP awake, 4.3 +/- 0.05 (SE) arbitrary units, stage 2, 1.1 +/- 0.2; stage 3/4, 1.0 +/- 0.2. Masseter awake, 4.8 +/- 0.6; stage 2, 3.3 +/- 0.5; stage 3/4, 3.1 +/- 0.5]. On the other hand, the peak phasic EMG of both inspiratory phasic muscles (GG and D) was well maintained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Both isocapnic and poikilocapnic hypoxia may elicit a biphasic respiratory response, during which an initial ventilatory stimulation is followed by a reduction in breathing and diaphragm (DIA) electrical activity. To ascertain whether during adulthood other respiratory muscles have biphasic hypoxic responses similar to the DIA, in nine anesthetized cats electromyograms (EMG) were recorded from the DIA, genioglossus (GG), and triangularis sterni (TS) (n = 7) muscles during poikilocapnic hypoxia. DIA and GG EMG started at 60 +/- 4 and 9 +/- 3 units, respectively, during O2 breathing, increased to a maximum of 100 units during the 10-min hypoxic stimulus, and subsequently declined to 81 +/- 6 and 58 +/- 12 units, respectively, by the end of 10 min of hypoxia. The time course of the increase and subsequent decline was similar for the DIA and GG and for GG activity during both inspiration and expiration. Furthermore the degree to which GG EMG declined after reaching its peak activity level correlated with the magnitude of the respective decline in DIA EMG (r = 0.79, P less than 0.02). The TS, in contrast, was maximally active either during O2 breathing or very early during hypoxia, and its activity declined progressively thereafter (to 13 +/- 6% of its peak value at the end of 10 min of hypoxia). The degree to which TS EMG declined did not correlate with the degree to which DIA or GG EMG declined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We propose that a sleep-induced decrement in the activity of the tensor palatini (TP) muscle could induce airway narrowing in the area posterior to the soft palate and therefore lead to an increase in upper airway resistance in normal subjects. We investigated the TP to determine the influence of sleep on TP muscle activity and the relationship between changing TP activity and upper airway resistance over the entire night and during short sleep-awake transitions. Seven normal male subjects were studied on a single night with wire electrodes placed in both TP muscles. Sleep stage, inspiratory airflow, transpalatal pressure, and TP moving time average electromyogram (EMG) were continuously recorded. In addition, in two of the seven subjects the activity (EMG) of both the TP and the genioglossus muscle simultaneously was recorded throughout the night. Upper airway resistance increased progressively from wakefulness through the various non-rapid-eye-movement sleep stages, as has been previously described. The TP EMG did not commonly demonstrate phasic activity during wakefulness or sleep. However, the tonic EMG decreased progressively and significantly (P less than 0.05) from wakefulness through the non-rapid-eye-movement sleep stages [awake, 4.6 +/- 0.3 (SE) arbitrary units; stage 1, 2.6 +/- 0.3; stage 2, 1.7 +/- 0.5; stage 3/4, 1.5 +/- 0.8]. The mean correlation coefficient between TP EMG and upper airway resistance across all sleep states was (-0.46). This mean correlation improved over discrete sleep-awake transitions (-0.76). No sleep-induced decrement in the genioglossus activity was observed in the two subjects studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The influence of nasal airflow, temperature, and pressure on upper airway muscle electromyogram (EMG) was studied during steady-state exercise in five normal subjects. Alae nasi (AN) and genioglossus EMG activity was recorded together with nasal and oral airflows and pressures measured simultaneously by use of a partitioned face mask. At constant ventilations between 30 and 50 l/min, peak inspiratory AN activity during nasal breathing (7.2 +/- 1.4 arbitrary units) was greater than that during oral breathing (1.0 +/- 0.3 arbitrary units; P less than 0.005). In addition, the onset of AN EMG activity preceded inspiratory flow by 0.38 +/- 0.03 s during nasal breathing but by only 0.17 +/- 0.04 s during oral breathing (P less than 0.04). When the subject changed from nasal to oral breathing, both these differences were apparent on the first breath. However, peak AN activity during nasal breathing was uninfluenced by inspiration of hot saturated air (greater than 40 degrees C), by external inspiratory nasal resistance, or by changes in the expiratory route. The genioglossus activity did not differ between nasal and oral breathing (n = 2). Our findings do not support reflex control of AN activity sensitive to nasal flow, temperature, or surface pressure. We propose a centrally controlled feedforward modulation of phasic inspiratory AN activity linked with the tonic drive to the muscles determining upper airway breathing route.  相似文献   

5.
Several investigators have observed that irregular breathing occurs during rapid-eye-movement (REM) sleep in healthy subjects, with ventilatory suppression being prominent during active eye movements [phasic REM (PREM) sleep] as opposed to tonic REM (TREM) sleep, when ocular activity is absent and ventilation more regular. Inasmuch as considerable data suggest that rapid eye movements are a manifestation of sleep-induced neural events that may importantly influence respiratory neurons, we hypothesized that upper airway dilator muscle activation may also be suppressed during periods of active eye movements in REM sleep. We studied six normal men during single nocturnal sleep studies. Standard sleep-staging parameters, ventilation, and genioglossus and alae nasi electromyograms (EMG) were continuously recorded during the study. There were no significant differences in minute ventilation, tidal volume, or any index of genioglossus or alae nasi EMG amplitude between non-REM (NREM) and REM sleep, when REM was analyzed as a single sleep stage. Each breath during REM sleep was scored as "phasic" or "tonic," depending on its proximity to REM deflections on the electrooculogram. Comparison of all three sleep states (NREM, PREM, and TREM) revealed that peak inspiratory genioglossus and alae nasi EMG activities were significantly decreased during PREM sleep compared with TREM sleep [genioglossus (arbitrary units): NREM 49 +/- 12 (mean +/- SE), TREM 49 +/- 5, PREM 20 +/- 5 (P less than 0.05, PREM different from TREM and NREM); alae nasi: NREM 16 +/- 4, TREM 38 +/- 7, PREM 10 +/- 4 (P less than 0.05, PREM different from TREM)]. We also observed, as have others, that ventilation, tidal volume, and mean inspiratory airflow were significantly decreased and respiratory frequency was increased during PREM sleep compared with both TREM and NREM sleep. We conclude that hypoventilation occurs in concert with reduced upper airway dilator muscle activation during PREM sleep by mechanisms that remain to be established.  相似文献   

6.
The purposes of this study were 1) to characterize the immediate inspiratory muscle and ventilation responses to inspiratory resistive loading during sleep in humans and 2) to determine whether upper airway caliber was compromised in the presence of a resistive load. Ventilation variables, chest wall, and upper airway inspiratory muscle electromyograms (EMG), and upper airway resistance were measured for two breaths immediately preceding and immediately following six applications of an inspiratory resistive load of 15 cmH2O.l-1 X s during wakefulness and stage 2 sleep. During wakefulness, chest wall inspiratory peak EMG activity increased 40 +/- 15% (SE), and inspiratory time increased 20 +/- 5%. Therefore, the rate of rise of chest wall EMG increased 14 +/- 10.9% (NS). Upper airway inspiratory muscle activity changed in an inconsistent fashion with application of the load. Tidal volume decreased 16 +/- 6%, and upper airway resistance increased 141 +/- 23% above pre-load levels. During sleep, there was no significant chest wall or upper airway inspiratory muscle or timing responses to loading. Tidal volume decreased 40 +/- 7% and upper airway resistance increased 188 +/- 52%, changes greater than those observed during wakefulness. We conclude that 1) the immediate inspiratory muscle and timing responses observed during inspiratory resistive loading in wakefulness were absent during sleep, 2) there was inadequate activation of upper airway inspiratory muscle activity to compensate for the increased upper airway inspiratory subatmospheric pressure present during loading, and 3) the alteration in upper airway mechanics during resistive loading was greater during sleep than wakefulness.  相似文献   

7.
In the present study, we assessed the reproducibility and responsiveness of transcutaneous electromyography (EMG) of the respiratory muscles in patients with chronic obstructive pulmonary disease (COPD) and healthy subjects during breathing against an inspiratory load. In seven healthy subjects and seven COPD patients, EMG signals of the frontal and dorsal diaphragm, intercostal muscles, abdominal muscles, and scalene muscles were derived on 2 different days, both during breathing at rest and during breathing through an inspiratory threshold device of 7, 14, and 21 cm H2O. For analysis, we used the logarithm of the ratio of the inspiratory activity during the subsequent loads and the activity at baseline [log EMG activity ratio (EMGAR)]. Reproducibility of the EMG was assessed by comparing the log EMGAR values measured at test days 1 and 2 in both groups. Responsiveness (sensitivity to change) of the EMG was assessed by comparing the log EMGAR values of the COPD patients to those of the healthy subjects at each load. During days 1 and 2, log EMGAR values of the diaphragm and the intercostal muscles correlated significantly. For the scalene muscles, significant correlations were found for the COPD patients. Although inspiratory muscle activity increased significantly during the subsequent loads in all participants, the COPD patients displayed a significantly greater increase in intercostal and left scalene muscle activity compared with the healthy subjects. In conclusion, the present study showed that the EMG technique is a reproducible and sensitive technique to assess breathing patterns in COPD patients and healthy subjects.  相似文献   

8.
We reasoned that neural information from upper airway (UA) sensory receptors could influence the relationship between UA and diaphragmatic neuromuscular responses to hypercapnia. In this study, the electromyographic (EMG) activities of the alae nasi (AN), genioglossus (GG), and chest wall (CW) or diaphragm (Di) to ventilatory loading were assessed in six laryngectomized, tracheostomized human subjects and in six subjects breathing with an intact UA before and after topical UA anesthesia. The EMG activities of the UA and thoracic muscles increased at similar rates with increasing hypercapnia in normal subjects, in subjects whose upper airways were anesthetized, and in laryngectomized subjects breathing with a cervical tracheostomy. Furthermore, in the laryngectomized subjects, respiratory muscle EMG activation increased with resistive inspiratory loading (15 cmH2O X l-1 X s) applied at the level of a cervical tracheostomy. At an average expired CO2 fraction of 7.0%, resistive loading resulted in a 93 +/- 26.3% (SE) increase in peak AN EMG activity, a 39 +/- 2.0% increase in peak GG EMG activity, and a 43.2 +/- 16.5% increase in peak CW (Di) EMG activity compared with control values. We conclude that the ventilatory responses of the UA and thoracic muscles to ventilatory loading are not substantially influenced by laryngectomy or UA anesthesia.  相似文献   

9.
Collapsibility of the human upper airway during normal sleep   总被引:6,自引:0,他引:6  
Upper airway resistance (UAR) increases in normal subjects during the transition from wakefulness to sleep. To examine the influence of sleep on upper airway collapsibility, inspiratory UAR (epiglottis to nares) and genioglossus electromyogram (EMG) were measured in six healthy men before and during inspiratory resistive loading. UAR increased significantly (P less than 0.05) from wakefulness to non-rapid-eye-movement (NREM) sleep [3.1 +/- 0.4 to 11.7 +/- 3.5 (SE) cmH2O.1-1.s]. Resistive load application during wakefulness produced small increments in UAR. However, during NREM sleep, UAR increased dramatically with loading in four subjects although two subjects demonstrated little change. This increment in UAR from wakefulness to sleep correlated closely with the rise in UAR during loading while asleep (e.g., load 12: r = 0.90, P less than 0.05), indicating consistent upper airway behavior during sleep. On the other hand, no measurement of upper airway behavior during wakefulness was predictive of events during sleep. Although the influence of sleep on the EMG was difficult to assess, peak inspiratory genioglossus EMG clearly increased (P less than 0.05) after load application during NREM sleep. Finally, minute ventilation fell significantly from wakefulness values during NREM sleep, with the largest decrement in sleeping minute ventilation occurring in those subjects having the greatest awake-to-sleep increment in UAR (r = -0.88, P less than 0.05). We conclude that there is marked variability among normal men in upper airway collapsibility during sleep.  相似文献   

10.
Although pharyngeal muscles respond robustly to increasing PCO(2) during wakefulness, the effect of hypercapnia on upper airway muscle activation during sleep has not been carefully assessed. This may be important, because it has been hypothesized that CO(2)-driven muscle activation may importantly stabilize the upper airway during stages 3 and 4 sleep. To test this hypothesis, we measured ventilation, airway resistance, genioglossus (GG) and tensor palatini (TP) electromyogram (EMG), plus end-tidal PCO(2) (PET(CO(2))) in 18 subjects during wakefulness, stage 2, and slow-wave sleep (SWS). Responses of ventilation and muscle EMG to administered CO(2) (PET(CO(2)) = 6 Torr above the eupneic level) were also assessed during SWS (n = 9) or stage 2 sleep (n = 7). PET(CO(2)) increased spontaneously by 0.8 +/- 0.1 Torr from stage 2 to SWS (from 43.3 +/- 0.6 to 44.1 +/- 0.5 Torr, P < 0.05), with no significant change in GG or TP EMG. Despite a significant increase in minute ventilation with induced hypercapnia (from 8.3 +/- 0.1 to 11.9 +/- 0.3 l/min in stage 2 and 8.6 +/- 0.4 to 12.7 +/- 0.4 l/min in SWS, P < 0.05 for both), there was no significant change in the GG or TP EMG. These data indicate that supraphysiological levels of PET(CO(2)) (50.4 +/- 1.6 Torr in stage 2, and 50.4 +/- 0.9 Torr in SWS) are not a major independent stimulus to pharyngeal dilator muscle activation during either SWS or stage 2 sleep. Thus hypercapnia-induced pharyngeal dilator muscle activation alone is unlikely to explain the paucity of sleep-disordered breathing events during SWS.  相似文献   

11.
We studied waking and genioglossus electromyographic (EMGgg) responses to oscillating pressure waves applied to the upper airways of three sleeping dogs. The dogs were previously prepared with a permanent side-hole tracheal stoma and were trained to sleep with a tight-fitting snout mask, hermetically sealed in place, while breathing through a cuffed endotracheal tube inserted through the tracheostomy. Sleep state was determined by behavioral, electroencephalographic, and electromyographic criteria, and EMGgg activity was measured using fine bipolar electrodes inserted directly into the muscle. Oscillatory pressure waves of 30 Hz and +/- 3 cmH2O (tested at atmospheric and subatmospheric upper airway pressures) were applied at the dog's nostrils or larynx, either constantly for a period of 1 min or in 0.5-s bursts. We found that the pressure stimulus had two major effects. First, it was a potentially powerful arousal-promoting stimulus. Arousal occurred in 78% of tests in slow-wave sleep (SWS) and 55% of tests in rapid-eye-movement (REM) sleep, with swallowing and sighing accompanying many of the arousals. Second, it produced an immediate and sustained augmentation of EMGgg, in wakefulness, SWS, and REM sleep. We conclude that oscillatory pressure waves in the upper airway, as found in snoring, produce reflex responses that help maintain upper airway patency during sleep. Loss of this type of reflex might contribute to the onset of obstructive sleep apnea in chronic snorers.  相似文献   

12.
The neonatal ventilatory response to hypoxia is characterized by initial transient stimulation and subsequent respiratory depression. It is unknown, however, whether this response is also exhibited by the upper airway muscles that regulate nasal, laryngeal, and pharyngeal patency. We therefore compared electromyogram (EMG) amplitudes and minute EMGs for the diaphragm (DIA), alae nasi (AN), posterior cricoarytenoid (PCA), and genioglossus (GG) muscles in 12 anesthetized spontaneously breathing piglets during inhalation of 12% O2 over 10 min. Minute EMG for the DIA responded to hypoxia with an initial transient increase and subsequent return to prehypoxia levels by 10 min. Hypoxia also stimulated all three upper airway muscles. In contrast to the DIA EMG, however, AN, PCA, and GG EMGs all remained significantly above prehypoxia levels after 10 min of hypoxia. We have thus demonstrated that the initial stimulation and subsequent depression of the DIA EMG after 12% O2 inhalation contrast with the sustained increase in AN, PCA, and GG EMGs during hypoxia. We speculate that 1) central inhibition during neonatal hypoxia is primarily distributed to the motoneuron pools regulating DIA activation and 2) peripheral chemoreceptor stimulation and/or central disinhibition induced by hypoxia preferentially influence those motoneuron pools that regulate upper airway muscle activation, causing the different hypoxic responses of these muscle groups in the young piglet.  相似文献   

13.
Upper airway muscles and the diaphragm may have different quantitative responses to chemoreceptor stimulation. To compare the respiratory muscle responses to changes in CO2, 10 ventilator-dependent preterm infants (gestational age 28 +/- 1 wk, postnatal age 40 +/- 6 days, weight 1.4 +/- 0.1 kg) were passively hyperventilated to apnea and subsequently hypoventilated. Electromyograms from the genioglossus, alae nasi, posterior cricoarytenoid, and diaphragm were recorded from surface electrodes. Apneic CO2 thresholds of all upper airway muscles (genioglossus 46.8 +/- 4.3 Torr, alae nasi 42.4 +/- 3.6 Torr, posterior cricoarytenoid 41.6 +/- 3.2 Torr) were higher than those of the diaphragm (38.8 +/- 2.6 Torr, all P less than 0.05). Above their CO2 threshold levels, responses of all upper airway muscles appeared proportional to those of the diaphragm. We conclude that nonproportional responses of the respiratory muscles to hypercapnia may be the result of differences in their CO2 threshold. These differences in CO2 threshold may cause imbalance in respiratory muscle activation with changes in chemical drive, leading to upper airway instability and obstructive apnea.  相似文献   

14.
Tonic inhibition of some respiratory muscles occurs as part of the generalized muscle atonia of rapid-eye-movement sleep (REMS). A second type of inhibition of the diaphragm during REMS, fractionations, consists of brief pauses in the diaphragmatic electromyogram (DIA EMG) in association with phasic events. Because motor inhibition can occur as part of the startle response, and the brain is highly activated during REMS, we hypothesized that the neural basis of the fractionations might be activation of a startle network. To test this hypothesis, tone bursts (100 dB, 20-ms duration at 15-s intervals) were applied to cats at a fixed inspiratory level in the DIA moving average during REMS, non-rapid-eye-movement sleep (NREMS), and wakefulness. Parallel sham studies (no tone applied) were obtained for each state. The response of the DIA EMG was averaged over 100 ms by using the tone pulse as a trigger, and the following parameters of the DIA EMG were measured: latency to peak and/or nadir, increment or decrement in activity, and duration of peak and/or nadir. After a tone, all five animals studied displayed a profound suppression of DIA activity during REMS (latency to nadir 42.4 +/- 10.0 ms, duration of suppression 35.9 +/- 17.6 ms). Similarly, DIA activity was suppressed in all cats during NREMS (latency to nadir 40.9 +/- 13.3 ms, duration 23.9 +/- 13.4 ms). An excitatory response was observed in only two cats during NREMS and wakefulness. The similarity of startle-induced DIA EMG pauses to spontaneous fractionations of DIA activity during REMS suggests that the latter result from activation of a central startle system.  相似文献   

15.
In the present study, we investigated in anesthetized rats the influences of the pontine rapid-eye-movement (REM) sleep center on trigeminally induced respiratory responses. We evoked the nasotrigeminal reflex by electrical stimulation of the ethmoidal nerve (EN5) and analyzed the EN5-evoked respiratory suppression before and after injections into the pontine reticular nuclei of the cholinergic agonist carbachol. After injections of 80-100 nl of carbachol (20 mM), we observed a decrease in respiratory rate, respiratory minute volume, and blood pressure but an increase in tidal volume. In those cases in which carbachol injections alone caused these REM sleep-like autonomic responses, we also observed that the EN5-evoked respiratory suppression was significantly potentiated. Unfortunately, carbachol injections failed to depress genioglossus electromyogram (EMG) effectively, because the EMG activity was already strongly depressed by the anesthetic alpha-chloralose. We assume that pontine carbachol injections in our anesthetized rats cause autonomic effects that largely resemble REM sleep-like respiratory and vascular responses. We therefore conclude that the observed potentiation of EN5-evoked respiratory suppression after carbachol might be due to REM sleep-associated neuronal mechanisms. We speculate that activation of sensory trigeminal afferents during REM sleep might contribute to pathological REM sleep-associated respiratory failures.  相似文献   

16.
Repeated electrical or hypoxic stimulation of peripheral chemoreceptors has been shown to cause a persistent poststimulus increase in respiratory motoneuron activity, termed long-term facilitation (LTF). LTF after episodic hypoxia has been demonstrated most consistently in anesthetized, vagotomized, paralyzed, artificially ventilated rats. Evidence for LTF in spontaneously breathing animals and humans after episodic hypoxia is equivocal and may have been influenced by the awake state of the subjects in these studies. The present study was designed to test the hypothesis that LTF is evoked in respiratory-related tongue muscle and inspiratory pump muscle activities after episodic hypoxia in 10 spontaneously breathing, anesthetized, vagotomized rats. The animals were exposed to three (5-min) episodes of isocapnic hypoxia, separated by 5 min of hyperoxia (50% inspired oxygen). Genioglossus, hyoglossus, and inspiratory intercostal EMG activities, along with respiratory-related tongue movements and esophageal pressure, were recorded before, during, and for 60 min after the end of episodic isocapnic hypoxia. We found no evidence for LTF in tongue muscle (genioglossus, hyoglossus) or inspiratory pump muscle (inspiratory intercostal) activities after episodic hypoxia. Rather, the primary poststimulus effect of episodic hypoxia was diminished respiratory frequency, which contributed to a reduction in ventilatory drive.  相似文献   

17.
Effect of upper airway pressure changes on thoracic inspiratory muscles has been shown to depend on the time of application during the breathing cycle. The present study was designed to investigate the importance of the time of application of upper airway negative pressure pulses on upper airway muscles. The upper airway was functionally isolated into a closed system in 24 anesthetized spontaneously breathing rabbits. Negative pressure pulses were applied in early (within the first 200 ms) and late (greater than or equal to 200 ms) inspiration, while electromyograms (EMG) of the diaphragm (Dia), genioglossus (GG), alae nasi (AN), and/or posterior cricoarytenoid (PCA) muscles were simultaneously monitored. When negative pressure pulse was applied in early inspiration, the increase in GG activity was greater [0.49 +/- 0.37 to 4.24 +/- 3.71 arbitrary units (AU)] than when negative pressure was applied in late inspiration (0.44 +/- 0.29 to 2.64 +/- 3.05 AU). Similarly, increased activation of AN (2.63 +/- 1.01 to 4.26 +/- 1.69 AU) and PCA (3.46 +/- 1.16 to 6.18 +/- 2.93 AU) was also observed with early inspiratory application of negative pressure pulses; minimal effects were seen in these muscles with late application. An inhibitory effect on respiratory timing consisting of a prolongation in inspiration (TI) and a decrease in peak Dia EMG/TI was observed as previously reported. These results indicate that the time of application of negative pressure during the breathing cycle is an important variable in determining the magnitude of the response of upper airway muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Upper airway (UA) dynamics can be evaluated during wakefulness by using electrical phrenic nerve stimulation (EPNS) applied at end-expiration during exclusive nasal breathing by dissociating twitch flow and phasic activation of UA muscles. This technique can be used to quantify the influence of nonphasic electromyographic (EMG) activity on UA dynamics. UA dynamics was characterized by using EPNS when increasing tonic EMG activity with CO(2) stimulation in six normal awake subjects. Instantaneous flow, esophageal and nasopharyngeal pressures, and genioglossal EMG activity were recorded during EPNS at baseline and during CO(2) ventilatory stimulation. The proportion of twitches presenting an inspiratory-flow limitation pattern decreased from 100% at baseline to 78.7 +/- 21.4% (P = 10(-4)) during CO(2) rebreathing. During CO(2) stimuli, maximal inspiratory twitch flow (VI(max)) of flow-limited twitches significantly rose, with the driving pressure at which flow limitation occurred being more negative. For the group as a whole, the increase in VI(max) and the decrease in pressure were significantly correlated with the rise in end-expiratory EMG activity. UA stability assessed by EPNS is dramatically modified during CO(2) ventilatory stimulation. Changes in tonic genioglossus EMG activity significantly contribute to the improvement in UA stability.  相似文献   

19.
Both nasal obstruction and nasal anesthesia result in disordered breathing during sleep in humans, and bypassing the nasal route during tidal breathing in experimental animals produces decreased electromyographic activity of upper airway (UA) dilating muscles. To investigate UA responses to breathing route in normal awake humans, we studied eight healthy males (ages 21-38 yr) during successive trials of voluntary nose breathing (N), voluntary mouth breathing (M), and mouth breathing with nose occluded (MO). We measured genioglossus electromyographic activity (EMGgg) with perorally inserted bipolar electrodes, alae nasi (EMGan) and diaphragm EMG activity (EMGdi) with surface electrodes, and minute ventilation (VE) with a pneumotachograph. Mean phasic inspiratory EMG activity of both UA muscles was significantly greater during N than during M or MO, even when a 2.5-cmH2O.l-1.s inspiratory resistance was added to MO (P less than 0.01). In contrast, neither EMGdi nor VE was consistently affected by breathing route. EMGgg during N was significantly decreased after selective topical nasal anesthesia (P less than 0.002); a decrease in EMGan did not achieve statistical significance. These data suggest that peak UA dilating muscle activity may be modulated by superficial receptors in the nasal mucosa sensitive to airflow.  相似文献   

20.
The quantification of respiratory variability may provide insight into the integrative control of breathing. To test the hypothesis that sleep and/or increased chemical drive modifies respiratory variability, six male adult Sprague-Dawley rats were instrumented with diaphragm electromyographic (EMG) electrodes and exposed to 0, 2.5, and 5.0% CO2 with a balance of room air during wakefulness and behaviorally determined sleep. Respiratory interval (Ttot), peak diaphragm EMG, and ventilation index (peak diaphragm EMG/Ttot) were calculated for 1,024 sequential breaths. The variability of breathing was quantified with a measurement of signal complexity, the approximate entropy, and two autocorrelation measurements, the autoregressive power spectrum slope and the detrended fluctuation analysis slope. Elevated chemical drive and/or sleep significantly modulated the variability of ventilation index and Ttot. There were also significant interactions between state and CO2 drive in all respiratory parameters. We conclude that state (sleep or wakefulness) and increased chemical drive affect respiratory variability differentially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号