首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previously, residue K6.30 in the COOH-terminal region of the third intracellular domain (3iC) of the oxytocin (OT) receptor (OTR) was identified as important for receptor function leading to phospholipase C activation in both OTR and the vasopressin V(2) receptor (V(2)R) chimera V(2)ROTR3iC. Substitution of either A6.28K or V6.30K in wild-type V(2)R did not recapitulate the increase in phosphatidylinositide (PI) turnover observed in V(2)ROTR3iC. Hence, the role of K6.30 may be context-specific. Deletion of two NH(2)-terminal OTR3iC segments in the V(2)ROTR3iC chimera did not diminish vasopressin-stimulated PI turnover, whereas deletion of RVSSVKL (residues 6.19-6.25) reduced receptor expression. Deletion of this sequence in wild-type OTR reduced expression by 50% without affecting affinity for [(3)H]OT. This OTR mutant was unable to activate PI turnover or extracellular signal-regulated kinase 1/2 phosphorylation. The effects of alanine substitution for individual residues in RVSSVKL indicated differential importance for OTR function. The R6.19A substitution lost high-affinity sites for [(3)H]OT and the ability to stimulate PI turnover. Affinity for [(3)H]OT and membrane expression was not affected by any other substitutions. OTR-V6.20A and OTR-K6.24A mutants functioned as well as wild-type OTR, whereas OTR S6.21A, S6.22A, and V6.23A mutants exhibited impaired abilities to activate PI turnover (20-40% of OTR), and the OTR-L6.25A mutant exhibited constitutive activity. In conclusion, specific amino acids in the RVSSVKL segment in the COOH-terminal region of the third intracellular domain of OTR influence the ability of OTR to activate G protein-mediated actions.  相似文献   

2.
In rat neonatal myocytes, a constitutively active G alpha(q) causes cellular injury and apoptosis. However, stimulation of the alpha(1)-adrenergic receptor, one of the G(q) protein-coupled receptors, with phenylephrine for 48 h causes little cellular injury and apoptosis. Expression of the G beta gamma-sequestering peptide beta ARK-ct increases the phenylephrine-induced cardiac injury, indicating that G beta gamma released from G(q) counteracts the G alpha(q)-mediated cellular injury. Stimulation with phenylephrine activates extracellular signal-regulated kinase (ERK) and Akt, and activation is significantly blunted by beta ARK-ct. Inhibition of Akt by inhibitors of phosphatidylinositol 3-kinase increases the cellular injury induced by phenylephrine stimulation. In contrast to the inhibition of Akt, inhibition of ERK does not affect the phenylephrine-induced cardiac injury. These results suggest that G beta gamma released from G(q) upon alpha(1)-adrenergic receptor stimulation activates ERK and Akt. However, activation of Akt but not ERK plays an important role in the protection against the G alpha(q)-induced cellular injury and apoptosis.  相似文献   

3.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) is most strongly regulated by dietary calcium and the action of parathyroid hormone to increase 1alpha-hydroxylase (1alpha-OHase) and decrease 24-hydroxylase (24-OHase) in kidney proximal tubules. This study examines the hypothesis that 1,25-(OH)(2)D(3) synthesis, induced by dietary calcium restriction, is also the result of negative feedback regulation blockade. Rats fed a low calcium (0.02%, -Ca) diet and given daily oral doses of vitamin D (0, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 microg) remained hypocalcemic despite increasing levels of serum calcium in relation to the vitamin D dose. Plasma levels of 1,25-(OH)(2)D(3) rose to high levels (1200 pg/ml) at the high vitamin D dose levels. As expected, thyroparathyroidectomy caused a rapid fall in serum 1,25-(OH)(2)D(3). In rats fed a 0.47% calcium diet (+Ca) supplemented with vitamin D (4 microg/day), exogenous 1,25-(OH)(2)D(3) suppressed renal 1alpha-OHase and stimulated the 24-OHase. In rats fed the -Ca diet, vitamin D was unable to suppress the renal 1alpha-OHase or stimulate the renal 24-OHase. In contrast, vitamin D was fully able to stimulate intestinal 24-OHase. Intestinal vitamin D receptor (VDR) was present under all circumstances, while kidney VDR was absent under hypocalcemic conditions and present under normocalcemic conditions. It appears that tissue-specific down-regulation of VDR by hypocalcemia blocks the 1,25-(OH)(2)D(3) suppression of the 1alpha-OHase and upregulation of the 24-OHase in the kidney, causing a marked accumulation of 1,25-(OH)(2)D(3) in the plasma.  相似文献   

4.
Protease-activated receptor 1 (PAR1) is an unusual GPCR that interacts with multiple G protein subfamilies (G(q/11), G(i/o), and G(12/13)) and their linked signaling pathways to regulate a broad range of pathophysiological processes. However, the molecular mechanisms whereby PAR1 interacts with multiple G proteins are not well understood. Whether PAR1 interacts with various G proteins at the same, different, or overlapping binding sites is not known. Here we investigated the functional and specific binding interactions between PAR1 and representative members of the G(q/11), G(i/o), and G(12/13) subfamilies. We report that G(q/11) physically and functionally interacts with specific amino acids within the second intracellular (i2) loop of PAR1. We identified five amino acids within the PAR1 i2 loop that, when mutated individually, each markedly reduced PAR1 activation of linked inositol phosphate formation in transfected COS-7 cells (functional PAR1-null cells). Among these mutations, only R205A completely abolished direct G(q/11) binding to PAR1 and also PAR1-directed inositol phosphate and calcium mobilization in COS-7 cells and PAR1-/- primary astrocytes. In stark contrast, none of the PAR1 i2 loop mutations disrupted direct PAR1 binding to either G(o) or G(12), or their functional coupling to linked pertussis toxin-sensitive ERK phosphorylation and C3 toxin-sensitive Rho activation, respectively. In astrocytes, our findings suggest that PAR1-directed calcium signaling involves a newly appreciated G(q/11)-PLCε pathway. In summary, we have identified key molecular determinants for PAR1 interactions with G(q/11), and our findings support a model where G(q/11), G(i/o) or G(12/13) each bind to distinct sites within the cytoplasmic regions of PAR1.  相似文献   

5.
The effect of mutations (V344E and T343A/V344E) in the third intracellular loop of the serotonin 5-HT(1A) receptor expressed transiently in human embryonic kidney 293 cells have been examined in terms of receptor/G protein interaction and signaling. Serotonin, (R)-8-hydroxy-2-dipropylaminotetralin [(R)-8-OH-DPAT], and buspirone inhibited cyclic AMP production in cells expressing native and mutant 5-HT(1A) receptors. Serotonin, however, produced inverse bell-shaped cyclic AMP concentration-response curves at native and mutant 5-HT(1A) receptors, indicating coupling not only to G(i)/G(o), but also to G(s). (R)-8-OH-DPAT, however, induced stimulation of cyclic AMP production only after inactivation of G(i)/G(o) proteins by pertussis toxin and only at the mutant receptors. The partial agonist buspirone was unable to induce coupling to G(s) at any of the receptors, even after pertussis toxin treatment. The basal activities of native and mutant 5-HT(1A) receptors in suppressing cyclic AMP levels were not found to be significantly different. The receptor binding characteristics of the native and mutant receptors were investigated using the novel 5-HT(1A) receptor antagonist [(3)H]NAD-299. For other receptors, analogous mutations have produced constitutive activation. This does not occur for the 5-HT(1A) receptor, and for this receptor the mutations seem to alter receptor/G protein coupling, allowing ligand-dependent coupling of receptor to G(s) in addition to G(i)/G(o) proteins.  相似文献   

6.
The stimulatory effect of vasoactive intestinal peptide (VIP) on the intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimaeric VPAC(1)/VPAC(2) or mutated receptors. The VIP-induced increase in [Ca(2+)](i) was linearly correlated with receptor density, and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar density of VPAC(2) receptors. The study was performed to establish the receptor sequence responsible for this difference. VPAC(1)/VPAC(2) chimaeric receptors were first used for broad positioning: those receptors having the third intracellular loop (IC3) of the VPAC(1) or the VPAC(2) receptor behaved, in this respect, phenotypically like VPAC(1) and VPAC(2) receptors respectively. Replacement in the VPAC(2) receptor of the sequence comprising residues 315-318 (VGGN) within IC3 by its VPAC(1) receptor counterpart (residues 328-331; IRKS) and the introduction of VGGN instead of IRKS into VPAC(1) was sufficient to mimic VPAC(1) and VPAC(2) receptor characteristics respectively. Thus a small sequence in the IC3 domain of the VPAC(1) receptor is responsible for the efficient agonist-stimulated increase in [Ca(2+)](i).  相似文献   

7.
The stimulatory effect of VIP on intracellular calcium concentration ([Ca(2+)](i)) has been investigated in Chinese hamster ovary cells stably transfected with the reporter gene aequorin, and expressing human VPAC(1), VPAC(2), chimeric VPAC(1)/VPAC(2), or mutated receptors. The VIP-induced [Ca(2+)](i) increase was linearly correlated with receptor density and was higher in cells expressing VPAC(1) receptors than in cells expressing a similar VPAC(2) receptor density. The study was performed to establish the receptor sequence responsible for that difference. VPAC(1)/VPAC(2) chimeric receptors were first used for a broad positioning: those having the third intracellular loop (IC(3)) of the VPAC(1) or of the VPAC(2) receptor behaved, in that respect, phenotypically like VPAC(1) and VPAC(2) receptor, respectively. Replacement in the VPAC(2) receptor of the sequence 315-318 (VGGN) within the IC(3) by its VPAC(1) receptor counterpart 328-331 (IRKS) and the introduction of VGGN in state of IRKS in VPAC(1) was sufficient to mimic the VPAC(1) and VPAC(2) receptor characteristics, respectively. Thus, a small sequence in the IC(3) of the VPAC(1) receptor, probably through interaction with G(alphai) and G(alphaq) proteins, is responsible for the efficient agonist-stimulated [Ca(2+)](i) increase.  相似文献   

8.
As the oxytocin receptor plays a key role in parturition and lactation, there is considerable interest in defining its structure/functional relationships. We previously showed that the rat oxytocin receptor transfected into Chinese hamster ovary cells was coupled to both G(q/11) and G(i/o), and that oxytocin stimulated ERK-2 phosphorylation and prostaglandin E(2) synthesis via protein kinase C activity. In this study, we show that deletion of 51 amino acid residues from the carboxyl terminus resulted in reduced affinity for oxytocin and a corresponding rightward shift in the dose-response curve for oxytocin-stimulated [Ca(2+)](i). However, oxytocin-stimulated ERK-2 phosphorylation and prostaglandin E(2) synthesis did not occur in cells expressing the truncated receptor. Oxytocin also failed to increase phospholipase A activity or activate protein kinase C, indicating that the mutant receptor is uncoupled from G(q)-mediated pathways. The Delta51 receptor is coupled to G(i), as oxytocin-stimulated Ca(2+) transients were inhibited by pertussis toxin, and a Gbetagamma sequestrant. Preincubation of Delta51 cells with the tyrosine kinase inhibitor, genistein, also blocked the oxytocin effect. A Delta39 mutant had all the activities of the wild type oxytocin receptor. These results show that the portion between 39 and 51 residues from the COOH terminus of the rat oxytocin receptor is required for interaction with G(q/11), but not G(i/o). Furthermore, an increase in intracellular calcium was generated via a G(i)betagamma-tyrosine kinase pathway from intracellular stores that are distinct from G(q)-mediated inositol trisphosphate-regulated stores.  相似文献   

9.
In the present study, the functional significance of the intracellular C-terminal loop of the mu-opioid receptor in activating Gi proteins was determined by constructing a C-terminal deletion mutant mu(C delta 45) receptor, which lacks the carboxyl 45 amino acids. When the truncated mu(C delta 45) receptor was stably expressed in human embryonic kidney (HEK) 293 cells, the efficacy and the potency of [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO), a specific mu-opioid receptor agonist, to inhibit forskolin-stimulated adenylate cyclase activity were not significantly affected. Similar to other G-coupled receptors, the third cytoplasmic loop of the mu-opioid receptor contains conserved basic residues (R276/R277/R280) at the C-terminal segment. Mutating these basic residues to neutral amino acids (L276/M277/L280) greatly impaired the ability of DAMGO to inhibit forskolin-stimulated cyclic AMP formation. Replacing R276/R277 with L276/M277 did not affect the efficacy and potency by which DAMGO inhibits the adenylate cyclase activity. In HEK 293 cells stably expressing mutant (R280L) mu-opioid receptors, the ability of DAMGO to inhibit forskolin-stimulated cyclic AMP production was greatly reduced. These results suggest that the intracellular carboxyl tail of the mu-opioid receptor does not play a significant role in activating Gi proteins and that the arginine residue (R280) at the distal third cytoplasmic loop is required for Gi activation by the mu-opioid receptor.  相似文献   

10.
The bacterial transposon Tn10 inserts preferentially into specific DNA sequences. DNA footprinting and interference studies have revealed that the Tn10-encoded transposase protein contacts a large stretch of target DNA ( approximately 24 bp) and that the target DNA structure is deformed upon incorporation into the transpososome. Target DNA deformation might contribute significantly to target site selection and thus it is of interest to further define the nature of this deformation. Circular permutation analysis was used to demonstrate that the target DNA is bent upon its incorporation into the transpososome. Two lines of evidence are presented that target DNA bending is an important event in target site selection. First, we demonstrate a correlation between increased target site usage and an increased level of target DNA bending. Second, transposase mutants with relaxed target specificity are shown to cause increased target DNA bending relative to wild-type transposase. This latter observation provides new insight into how relaxed specificity may be achieved. We also show that Ca(2+) facilitates target capture by stabilizing transposase interactions with sequences immediately flanking the insertion site. Ca(2+) could, in theory, exert this effect by stabilizing bends in the target DNA.  相似文献   

11.
Heterotrimeric G proteins play a pivotal role in GPCR signalling; they link receptors to intracellular effectors and their inactivation by RGS proteins is a key factor in resetting the pathway following stimulation. The precise GPCR:G protein:RGS combination determines the nature and duration of the response. Investigating the activity of particular combinations is difficult in cells which contain multiples of each component. We have therefore utilised a previously characterised yeast system to express mammalian proteins in isolation. Human G alpha(q) and G alpha(11) spontaneously activated the yeast pheromone-response pathway by a mechanism which required the formation of G alpha-GTP. This provided an assay for the specific activity of human RGS proteins. RGS1, RGS2, RGS3 and RGS4 inhibited the spontaneous activity of both G alpha(q) and G alpha(11) but, in contrast, RGS5 and RGS16 were much less effective against G alpha(11) than G alpha(q). Interestingly, RGS2 and RGS3 were able to inhibit signalling from the constitutively active G alpha(q)QL/G alpha(11)QL mutants, confirming the GAP-independent activity of these RGS proteins. To determine if the RGS-G alpha specificity was maintained under conditions of GPCR stimulation, minor modifications to the C-terminus of G alpha(q)/G alpha(11) enabled coupling to an endogenous receptor. RGS2 and RGS3 were effective inhibitors of both G alpha subunits even at high levels of receptor stimulation, emphasising their GAP-independent activity. At low levels of stimulation RGS5 and RGS16 retained their differential G alpha activity, further highlighting that RGS proteins can discriminate between two very closely related G alpha subunits.  相似文献   

12.
The D2 dopamine receptor has two isoforms, the short form (D2s receptor) and the long form (D2l receptor), which differ by the presence of a 29-amino acid insert in the third cytoplasmic loop. Both the D2s and D2l receptors have been shown to couple to members of the G alpha(i) family of G proteins, but whether each isoform couples to specific G alpha(i) protein(s) remains controversial. In previous studies using G alpha(i) mutants resistant to modification by pertussis toxin (G alpha(i)PT), we demonstrated that the D2s receptor couples selectively to G alpha(i2)PT and that the D2l receptor couples selectively to G alpha(i3)PT (Senogles, S. E. (1994) J. Biol. Chem. 269, 23120-23127). In this study, two point mutations of the D2s receptor were created by random mutagenesis (R233G and A234T). The two mutant D2s receptors demonstrated pharmacological characteristics comparable with those of the wild-type D2s receptor, with similar agonist and antagonist binding affinities. We used human embryonic kidney 293 cells stably transfected with G alpha(i1)PT, G alpha(i2)PT, or G alpha(i3)PT to measure agonist-mediated inhibition of forskolin-stimulated cAMP accumulation before and after pertussis toxin treatment. The two mutant D2s receptors demonstrated a change in G(i) coupling specificity compared with the wild-type D2s receptor. Whereas the wild-type D2s receptor coupled predominantly to G alpha(i2)PT, mutant R233G coupled preferentially to G alpha(i3)PT, and mutant A234T coupled preferentially to G alpha(i1)PT. These results suggest that this region of the third cytoplasmic loop is crucial for determining G(i) protein coupling specificity.  相似文献   

13.
Desensitization of G protein-coupled receptors (GPCRs) involves the binding of members of the family of arrestins to the receptors. In the model system involving the visual GPCR rhodopsin, activation and phosphorylation of rhodopsin is thought to convert arrestin from a low to high affinity binding state. Phosphorylation of the M(2) muscarinic acetylcholine receptor (mAChR) has been shown to be required for binding of arrestins 2 and 3 in vitro and for arrestin-enhanced internalization in intact cells (Pals-Rylaarsdam, R., and Hosey, M. M. (1997) J. Biol. Chem. 272, 14152-14158). For the M(2) mAChR, arrestin binding requires phosphorylation at multiple serine and threonine residues at amino acids 307-311 in the third intracellular (i3) loop. Here, we have investigated the molecular basis for the requirement of receptor phosphorylation for arrestin binding. Constructs of arrestin 2 that can bind to other GPCRs in a phosphorylation-independent manner were unable to interact with a mutant M(2) mAChR in which the Ser/Thr residues at 307-311 were mutated to alanines. However, although phosphorylation-deficient mutants of the M(2) mAChR that lacked 50-157 amino acids from the i3 loop were unable to undergo agonist-dependent internalization when expressed alone in tsA201 cells, co-expression of arrestin 2 or 3 restored agonist-dependent internalization. Furthermore, a deletion of only 15 amino acids (amino acids 304-319) was sufficient to allow for phosphorylation-independent arrestin-receptor interaction. These results indicate that phosphorylation at residues 307-311 does not appear to be required to activate arrestin into a high affinity binding state. Instead, phosphorylation at residues 307-311 appears to facilitate the removal of an inhibitory constraint that precludes receptor-arrestin association in the absence of receptor phosphorylation.  相似文献   

14.
This study examined the role of the Gα(q) signal constituted by Gα(q) and Gα(11) (encoded by Gnα(q) and Gnα(11), respectively), a major intracellular pathway of parathyroid hormone (PTH), in the PTH osteoanabolic action by the gain- and loss-of-function analyses. Transgenic mice with osteoblast-specific overexpression of the constitutively active Gnα(q) gene under the control of 2.3-kb type I collagen α1 chain (Col1a1) promoter exhibited osteopenia with decreased bone formation parameters and did not respond to the daily PTH treatment. We then established osteoblast-specific Gnα(q) and Gnα(11) double-knock-out (cDKO) mice by crossing the 2.3-kb Col1a1 promoter-Cre recombinase transgenic mice and those with Gnα(q) gene flanked with loxP and global ablation of Gnα(11) (Col1a1-Cre(+/-);Gna(q)(fl/fl);Gna(11)(-/-)) and found that the cDKO and single knock-out littermates of Gnα(q) or Gnα(11) exhibited normal bone volume and turnover under physiological conditions. With a daily injection of PTH, however, the cDKO mice, but not the single knock-out mice, showed higher bone volume and turnover than the wild-type littermates. Cultures of primary osteoblasts derived from cDKO and wild-type littermates confirmed enhancement of the PTH osteoanabolic action by the Gα(q) signal deficiency in a cell-autonomous mechanism, in association with the membrane translocation of protein kinase Cδ. This enhancement was reproduced by overexpression of regulator of G protein signaling-2, a Gα(q) signal inhibitor, in osteoblastic MC3T3-E1 cells. Hence, the Gα(q) signal plays an inhibitory role in the PTH osteoanabolic action, suggesting that its suppression may lead to a novel treatment in combination with PTH against osteoporosis.  相似文献   

15.
G protein-coupled receptor kinases (GRKs) are well characterized regulators of G protein-coupled receptors, whereas regulators of G protein signaling (RGS) proteins directly control the activity of G protein alpha subunits. Interestingly, a recent report (Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., and Tyers, M. (1996) Curr. Biol. 6, 211-212) identified a region within the N terminus of GRKs that contained homology to RGS domains. Given that RGS domains demonstrate AlF(4)(-)-dependent binding to G protein alpha subunits, we tested the ability of G proteins from a crude bovine brain extract to bind to GRK affinity columns in the absence or presence of AlF(4)(-). This revealed the specific ability of bovine brain Galpha(q/11) to bind to both GRK2 and GRK3 in an AlF(4)(-)-dependent manner. In contrast, Galpha(s), Galpha(i), and Galpha(12/13) did not bind to GRK2 or GRK3 despite their presence in the extract. Additional studies revealed that bovine brain Galpha(q/11) could also bind to an N-terminal construct of GRK2, while no binding of Galpha(q/11), Galpha(s), Galpha(i), or Galpha(12/13) to comparable constructs of GRK5 or GRK6 was observed. Experiments using purified Galpha(q) revealed significant binding of both Galpha(q) GDP/AlF(4)(-) and Galpha(q)(GTPgammaS), but not Galpha(q)(GDP), to GRK2. Activation-dependent binding was also observed in both COS-1 and HEK293 cells as GRK2 significantly co-immunoprecipitated constitutively active Galpha(q)(R183C) but not wild type Galpha(q). In vitro analysis revealed that GRK2 possesses weak GAP activity toward Galpha(q) that is dependent on the presence of a G protein-coupled receptor. However, GRK2 effectively inhibited Galpha(q)-mediated activation of phospholipase C-beta both in vitro and in cells, possibly through sequestration of activated Galpha(q). These data suggest that a subfamily of the GRKs may be bifunctional regulators of G protein-coupled receptor signaling operating directly on both receptors and G proteins.  相似文献   

16.
G protein-coupled receptors (GPCRs) transduce cellular signals from hormones, neurotransmitters, light, and odorants by activating heterotrimeric guanine nucleotide-binding (G) proteins. For many GPCRs, short term regulation is initiated by agonist-dependent phosphorylation by GPCR kinases (GRKs), such as GRK2, resulting in G protein/receptor uncoupling. GRK2 also regulates signaling by binding G alpha(q/ll) and inhibiting G alpha(q) stimulation of the effector phospholipase C beta. The binding site for G alpha(q/ll) resides within the amino-terminal domain of GRK2, which is homologous to the regulator of G protein signaling (RGS) family of proteins. To map the Galpha(q/ll) binding site on GRK2, we carried out site-directed mutagenesis of the RGS homology (RH) domain and identified eight residues, which when mutated, alter binding to G alpha(q/ll). These mutations do not alter the ability of full-length GRK2 to phosphorylate rhodopsin, an activity that also requires the amino-terminal domain. Mutations causing G alpha(q/ll) binding defects impair recruitment to the plasma membrane by activated G alpha(q) and regulation of G alpha(q)-stimulated phospholipase C beta activity when introduced into full-length GRK2. Two different protein interaction sites have previously been identified on RH domains. The G alpha binding sites on RGS4 and RGS9, called the "A" site, is localized to the loops between helices alpha 3 and alpha 4, alpha 5 and alpha 6, and alpha 7 and alpha 8. The adenomatous polyposis coli (APC) binding site of axin involves residues on alpha helices 3, 4, and 5 (the "B" site) of its RH domain. We demonstrate that the G alpha(q/ll) binding site on the GRK2 RH domain is distinct from the "A" and "B" sites and maps primarily to the COOH terminus of its alpha 5 helix. We suggest that this novel protein interaction site on an RH domain be designated the "C" site.  相似文献   

17.
Ho BY  Current L  Drewett JG 《FEBS letters》2002,522(1-3):130-134
The cannabinoid CB(1) but not the CB(2) receptor was demonstrated to couple via G(alpha16) to activate phospholipase C after co-expression in COS7 cells. Chimeric CB(1)/CB(2) receptors were used as a model to study receptor-G(alpha16) interaction. Sequences of the second and third intracellular loops and the carboxy-terminus were substituted from the CB(1) into the CB(2) receptor. Only the triple mutant with all three regions replaced activated phospholipase C to a similar extent as the CB(1) receptor, suggesting that all three intracellular regions are required for interacting with G(alpha16). Several sub-domains within the third intracellular loop were identified for receptor-G(alpha16) interaction.  相似文献   

18.
Transgenic overexpression of G alpha(q) causes cardiac hypertrophy and depressed contractile responses to beta-adrenergic receptor agonists. The electrophysiological basis of the altered myocardial function was examined in left ventricular myocytes isolated from transgenic (G alpha(q)) mice. Action potential duration was significantly prolonged in G alpha(q) compared with nontransgenic (NTG) myocytes. The densities of inward rectifier K(+) currents, transient outward K(+) currents (I(to)), and Na(+)/Ca(2+) exchange currents were reduced in G alpha(q) myocytes. Consistent with functional measurements, Na(+)/Ca(2+) exchanger gene expression was reduced in G alpha(q) hearts. Kinetics or sensitivity of I(to) to 4-aminopyridine was unchanged, but 4-aminopyridine prolonged the action potential more in G alpha(q) myocytes. Isoproterenol increased L-type Ca(2+) currents (I(Ca)) in both groups, with a similar EC(50), but the maximal response in G alpha(q) myocytes was approximately 24% of that in NTG myocytes. In NTG myocytes, the maximal increase of I(Ca) with isoproterenol or forskolin was similar. In G alpha(q) myocytes, forskolin was more effective and enhanced I(Ca) up to approximately 55% of that in NTG myocytes. These results indicate that the changes in ionic currents and multiple defects in the beta-adrenergic receptor/Ca(2+) channel signaling pathway contribute to altered ventricular function in this model of cardiac hypertrophy.  相似文献   

19.
It is believed that a finite pool of primordial follicles is established during embryonic and neonatal life. At birth, the mouse ovary consists of clusters of interconnected oocytes surrounded by pregranulosa cells. Shortly after birth these structures, termed germ cell cysts or nests (GCN), break down to facilitate primordial follicle formation. Tumor necrosis factor alpha (TNF) is a widely expressed protein with myriad functions. TNF is expressed in the ovary and may regulate GCN breakdown in rats. We investigated whether it participates in GCN breakdown and follicle formation in mice by using an in vitro ovary culture system as well as mutant animal models. We found that TNF and both receptors (TNFRSF1A and TNFRSF1B) are expressed in neonatal mouse ovaries and that TNF promotes oocyte death in neonatal ovaries in vitro. However, deletion of either receptor did not affect follicle endowment, suggesting that TNF does not regulate GCN breakdown in vivo. Tnfrsf1b deletion led to an apparent acceleration of follicular growth and a concomitant expansion of the primordial follicle population. This expansion of the primordial follicle population does not appear to be due to decreased primordial follicle atresia, although this cannot be ruled out completely. This study demonstrates that mouse oocytes express both TNF receptors and are sensitive to TNF-induced death. Additionally, TNFRSF1B is demonstrated to be an important mediator of TNF function in the mouse ovary and an important regulator of folliculogenesis.  相似文献   

20.
For many patients with cardiac insufficiency, the disease progresses inexorably to organ dilatation, pump failure, and death. Although there are examples of reversible heart failure in man, our understanding of how the myocardium repairs itself is limited. A well defined animal model of reversible heart failure would allow us to better investigate these restorative processes. Receptors that activate Galpha(q), a signal transduction molecule in the heterotrimeric G protein superfamily, are thought to play a key role in the development of heart failure. We demonstrated previously that mice expressing a recombinant Galpha(q) protein, the activity of which can be turned on or off at will in cardiac myocytes, develop a dilated cardiomyopathy with generalized edema and heart failure following activation of the protein (Fan, G., Jiang, Y.-P., Lu, Z., Martin, D. W., Kelly, D. J., Zuckerman, J. M., Ballou, L. M., Cohen, I. S., and Lin, R. Z. (2005) J. Biol. Chem. 280, 40337-40346). Here we report that the contractile dysfunction and pathological structural changes in the myocardium improved significantly after termination of the Galpha(q) signal, even in animals with overt heart failure. Abnormalities in two proteins that regulate Ca(2+) handling in myocytes, phospholamban and the voltage-dependent L-type Ca(2+) channel, were also reversed, as was the increased expression of genes that are associated with heart failure. These results indicate that the heart has a substantial reparative capacity if the molecular signals responsible for the myocardial dysfunction can be identified and blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号