首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress linked to DNA damage is involved in the pathogenesis of Helicobacter pylori-associated gastric diseases. The DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair, and apoptosis through the activation of ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR) and their target proteins. However, neither H. pylori-induced DDR nor the effects of antioxidants on the DNA damage have been established. This study aimed to investigate the detailed process of H. pylori-induced DNA damage and to examine whether lycopene, a natural antioxidant, inhibits DNA damage and cellular response of gastric epithelial AGS cells infected with H. pylori. AGS cells were cultured with H. pylori in Korean isolates and treated with or without lycopene. Cell viability, DNA damage indices, levels of 8-OH-dG, and reactive oxygen species (ROS) as well as cell-cycle distributions were determined. The activation of ATM, ATR, Chk1, and Chk2; histone H2AX focus formation; activation and induction of p53; and levels of Bax and Bcl-2 and poly(ADP-ribose) polymerase-1 (PARP-1) were assessed. The results showed that H. pylori induced apoptosis in AGS cells with increased Bax and decreased Bcl-2 expression as well as PARP-1 cleavage. Culture with H. pylori led to increases in intracellular ROS, 8-OH-dG, double-strand DNA breaks (DSBs), and DNA fragmentation. H. pylori induced activation of the ATM/Chk2 and ATR/Chk1 pathways, phosphorylation of H2AX and p53, and a delay in the progression of the cells entering the S phase. Lycopene inhibited H. pylori-induced increases in ROS, apoptosis, alterations in cell-cycle distribution, DSBs, and ATM- and ATR-mediated DDR in AGS cells. In conclusion, lycopene may be beneficial for treatment of H. pylori-induced gastric diseases associated with oxidative DNA damage.  相似文献   

2.
Helicobacter pylori, the main cause of chronic gastritis, plays a central role in the etiology of peptic ulcer disease and gastric cancer. In vitro studies have shown that H. pylori increases gastric epithelial cell turnover, thus increasing the risk for the development of neoplastic clones. The mechanisms by which H. pylori promotes perturbation of cell proliferation are not yet elucidated. To investigate whether products released by H. pylori in culture media interfere with cell cycle progression of human gastric epithelial cells, four cell lines (MKN 28, MKN 7, MKN 74, and AGS) were incubated in the presence of H. pylori broth culture filtrate. Cell cycle analysis showed that a H. pylori-released factor(s) significantly inhibited the G1- to S-phase progression of MKN 28 and MKN 7 cell lines, with a reversible, nonlethal mechanism, independent of the expression of VacA, CagA, and/or urease. The cell cycle inhibition occurred concomitantly with an increase in p27(KIP1) protein levels, a reduction in Rb protein phosphorylation on serine residues 807-811, and a significant decrease in cyclin E-associated cdk2 activity. In contrast, the cell cycle progression of MKN 74 and AGS cell lines was not affected by the H. pylori-released factor(s). In normal human fibroblasts, G1-phase cell accumulation was concomitant with the reduction in Rb protein phosphorylation; that, however, appeared to be dependent on p21(WAF1/CIP1) rather than on p27(KIP1) protein. A preliminary characterization showed that the molecular mass of the partially purified cell cycle inhibitory factor(s) was approximately 40 kDa. These results suggest that H. pylori releases a soluble factor(s) that may affect cell cycle progression of gastric epithelial cells through elevated levels of cdk inhibitor p27(KIP1). This factor(s) might act in vivo on noncolonized distant cells, the most proliferating cells of human gastric mucosa.  相似文献   

3.
Helicobacter pylori activates extracellular-signal related (ERK) kinases in gastric epithelial cells, via transactivation of the EGF receptor (EGFR). H. pylori activation of EGFR may be relevant to epithelial hyperproliferation and gastric carcinogenesis. The aim of this study was to develop an 'In-Cell Western' (ICW) assay for quantitative examination of H. pylori-induced epithelial signalling, to enable the role of the EGFR in H. pylori-induced phosphorylation of ERK in epithelial cells to be ascertained. H. pylori strains were co-incubated with A431 and AGS cells. pERK and total ERK were quantified in situ using ICW analysis. H. pylori strains both with, and without a cag PAI, and Helicobacter felis, significantly increased pERK levels in A431 cells. The EGFR inhibitor EKB-569 dose-dependently reduced H. pylori-induced ERK phosphorylation in A431 and AGS cells. A significantly lower reduction was observed with cag+ strains in A431 but not AGS cells. The cag PAI was not necessary for EGFR signal transactivation. These data suggest that H. pylori induces pERK in epithelial cells partly via the EGFR pathway. Additional signalling mechanisms are likely to be involved in H. pylori-induced ERK phosphorylation. ICW analysis is a rapid quantitative method for evaluating the effects of inhibitors on H. pylori-induced cell signalling pathways of relevance to gastric carcinogenesis.  相似文献   

4.
In vivo and in vitro studies have shown an increase in apoptosis in gastric epithelial cells in persons infected with Helicobacter pylori. H. pylori-induced activation of caspase-8 and -3 was evaluated using a human gastric adenocarcinoma cell line (AGS) and gastric tissue from humans and monkeys colonized with H. pylori. The enzymatic activity of caspase-8 was detected only in AGS cells exposed to H. pylori up to 24 h. The active form of caspase-8 was present by Western blot after exposure to H. pylori for 3 h and persisted through 24 h. Caspase-3 activity was present in AGS cells exposed to H. pylori for 3 h, reaching a maximum after 24 h (a sevenfold increase in activity). Caspase-8-mediated cleavage of procaspase-3 generated a 20-kDa band (indicative of the presence of active caspase-3) present only in AGS cells exposed to H. pylori. Active caspase-3 staining was markedly increased in gastric mucosa from infected persons and animals, compared to uninfected controls by immunohistochemistry. Stimulation of downstream events leading to apoptosis, such as the cleavage of PARP (poly adenosine-diphosphate-ribose polymerase) and DFF45 (DNA fragmentation factor 45) as a result of activation of caspase-3, was evaluated. PARP was cleaved, resulting in the presence of both an 89- and a 24-kDa band along with DFF45, resulting in the presence of 10- and 12-kDa bands only in gastric cells exposed to H. pylori. Our data show that H. pylori stimulates the activation of caspases and downstream mediators of caspase-induced apoptosis. This suggests that H. pylori-induced apoptosis is mediated through caspase pathways, which include the activation of caspase-8 and subsequent cleavage and activation of caspase-3. This is consistent with caspase-3 activation that was found in the gastric mucosa of humans and monkeys infected with H. pylori.  相似文献   

5.
6.
The aim of this study was to determine whether Helicobacter pylori activates mitogen-activated protein (MAP) kinases in gastric epithelial cells. Infection of AGS cells with an H. pylori cag+ strain rapidly (5 min) induced a dose-dependent activation of extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) MAP kinases, as determined by Western blot analysis and in vitro kinase assay. Compared with cag+ strains, cag- clinical isolates were less potent in inducing MAP kinase, particularly JNK and p38, activation. Isogenic inactivation of the picB region of the cag pathogenicity island resulted in a similar loss of JNK and p38 MAP kinase activation. The specific MAP kinase inhibitors, PD98059 (25 microM; MAP kinase kinase (MEK-1) inhibitor) and SB203580 (10 microM; p38 inhibitor), reduced H. pylori-induced IL-8 production in AGS cells by 78 and 82%, respectively (p < 0.01 for each). Both inhibitors together completely blocked IL-8 production (p < 0.001). However, the MAP kinase inhibitors did not prevent H. pylori-induced IkappaBalpha degradation or NF-kappaB activation. Thus, H. pylori rapidly activates ERK, p38, and JNK MAP kinases in gastric epithelial cells; cag+ isolates are more potent than cag- strains in inducing MAP kinase phosphorylation and gene products of the cag pathogenicity island are required for maximal MAP kinase activation. p38 and MEK-1 activity are required for H. pylori-induced IL-8 production, but do not appear to be essential for H. pylori-induced NF-kappaB activation. Since MAP kinases regulate cell proliferation, differentiation, programmed death, stress, and inflammatory responses, activation of gastric epithelial cell MAP kinases by H. pylori cag+ strains may be instrumental in inducing gastroduodenal inflammation, ulceration, and neoplasia.  相似文献   

7.
8.
In this study, we have evaluated the effects on cell cycle regulation of VacA alone and in combination with other two Helicobacter pylori proteins, cytotoxin-associated protein (CagA) and HspB, using the human gastric epithelial cells (AGS). Our results indicate that VacA alone was able to inhibit the G1 to S progression of the cell cycle. The VacA capacity of inhibiting cell progression from G1 to S phase was also observed when cells were co-transfected with CagA or HspB. Moreover, VacA over-expression caused apoptosis in AGS cells through activation of caspase 8 and even more of caspase 9, thus indicating an involvement of both the receptor-mediated and the mitochondrial pathways of apoptosis. Indeed, the two pathways probably can co-operate to execute cell death with a prevalence of the mitochondrial pathways. Our data taken together provide additional information to further enhance our understanding of the molecular mechanism by which H. pylori proteins alter the growth status of human gastric epithelial cells.  相似文献   

9.
The gastric pathogen Helicobacter pylori (H. pylori) is suggested to be associated with gastric cancer progression. In this study, we investigated the effect of H. pylori on urokinase plasminogen activator receptor (uPAR) expression which has been known to correlate closely with gastric cancer invasion. H. pylori induced the uPAR expression in a time- and concentration-dependent manner. Specific inhibitors and inactive mutants of MEK-1 and JNK were found to suppress the H. pylori-induced uPAR expression and the uPAR promoter activity. Electrophoretic mobility shift assay and transient transfection study using an AP-1 decoy oligonucleotide confirmed that the activation of AP-1 is involved in the H. pylori-induced uPAR upregulation. The AGS cells treated with H. pylori showed a remarkably enhanced invasiveness, and this effect was partially abrogated by uPAR-neutralizing antibodies. These results suggest that H. pylori induces uPAR expression via Erk-1/2, JNK, and AP-1 signaling pathways and, in turn, stimulates the cell invasiveness in human gastric cancer AGS cells.  相似文献   

10.
Helicobacter pylori causes various gastroduodenal diseases including gastric MALT lymphoma, but the mechanism underlying H. pylori-induced carcinogenesis is not known. The alternative pathway for NF-kappaB activation, which involves the processing of NF-kappaB2/p100 to p52, has been implicated in lymphocyte survival, attenuated apoptosis, and secondary lymphoid tissue development. In this study, we investigated H. pylori-induced activation of NF-kappaB through the alternative pathway in B lymphocytes. In immunoblot and EMSA, H. pylori induced NF-kappaB2/p100 processing to p52 and subsequent nuclear accumulation in IM-9 (human B cell line) cells and human peripheral blood B cells, but not in AGS (human gastric cancer cell line) cells. The activation of the alternative pathway was LPS-dependent but not cag pathogenicity island-dependent. Alternative pathway activation by H. pylori was associated with attenuated apoptosis. The expression levels of B lymphocyte chemoattractant, EBI-1 ligand chemokine, and stromal cell-derived factor-1alpha mRNAs were up-regulated in cocultured human B cells and in infected human gastric mucosa. In the infected mucosa, NF-kappaB2/p100 and p52 were detected immunohistochemically in the cytoplasm and nuclear compartments of lymphocytes, but not in epithelial cells. In summary, H. pylori activates the alternative NF-kappaB pathway in B lymphocytes. The effects on chemokine production and antiapoptosis mediated by H. pylori-induced processing of NF-kappaB2/p100 to p52 may drive lymphocytes to acquire malignant potential.  相似文献   

11.
In our previous study, we showed that Helicobacter pylori γ-glutamyltranspeptidase (GGT) is associated with H. pylori-induced apoptosis through a mitochondrial pathway. To better understand the role of GGT in apoptosis, we examined the effect of GGT on cell cycle regulation in AGS cells. To determine the effect of recombinant GGT (rGGT) on cell cycle distribution and apoptosis, rGGT-treated and untreated AGS cells were analyzed in parallel by flow cytometry using propidium iodide (PI). We found that rGGT inhibited the growth of AGS cells in a time-dependent manner, and that the pre-exposure of cells to a caspase-3 inhibitor (z-DEVD-fmk) effectively blocked GGT-induced apoptosis. Cell cycle analysis showed G1 phase arrest and apoptosis in AGS cells following rGGT treatment. The rGGT-mediated G1 phase arrest was found to be associated with down-regulation of cyclin E, cyclin A, Cdk 4, and Cdk 6, and the up-regulation of the cyclindependent kinase (Cdk) inhibitors p27 and p21. Our results suggest that H. pylori GGT induces cell cycle arrest at the G1-S phase transition.  相似文献   

12.
To explore the interactions between the host, environment and bacterium responsible for the different manifestations of Helicobacter pylori infection, we examined the effect of acidic conditions on H. pylori-induced interleukin (IL)-8 expression. AGS gastric epithelial cells were exposed to acidic pH and infected with H. pylori[wild-type strain, its isogenic cag pathogenicity island (PAI) mutant or its oipA mutant]. Exposure of AGS cells to acidic pH alone did not enhance IL-8 production. However, following exposure to acidic conditions, H. pylori infection resulted in marked enhancement of IL-8 production which was independent of the presence of the cag PAI and OipA, indicating that H. pylori and acidic conditions act synergistically to induce gastric mucosal IL-8 production. In neutral pH environments H. pylori-induced IL-8 induction involved the NF-kappaB pathways, the extracellular signal-regulated kinase (ERK)-->c-Fos/c-Jun-->activating protein (AP-1) pathways, JNK-->c-Jun-->AP-1 pathways and the p38 pathways. At acidic pH H. pylori-induced augmentation of IL-8 production involved markedly upregulated the NF-kappaB pathways and the ERK-->c-Fos-->AP-1 pathways. In contrast, activation of the JNK-->c-Jun-->AP-1 pathways and p38 pathways were pH independent. These results might explain the clinical studies in which patients with duodenal ulcers had higher levels of IL-8 in the antral gastric mucosa than patients with simple H. pylori gastritis.  相似文献   

13.
14.
Down-regulation of p53 expression has been found in a broad range of human cancers and cell proliferation disorders, indicating that p53 plays a key role in cell cycle regulation and tumor suppression. In our current study, we transfected human embryonic lung fibroblast (HELF) cells with pcDNA3-wild-type p53 (pcDNA3-wtp53) plasmid, or pcDNA3-H179Y-mutated p53 (pcDNA3-mtp53) plasmid that mimics the mutation found in some human lung tumors, and further studied the role of p53 in the regulation of cell proliferation. Over expression of wild-type p53 caused cell cycle arrest at G1 phase with reduced cell size, decreased expression of cyclin D3, cyclin E, Cdk2 and Cdk4, and increased expression of p21. In contrast, over expression of H179Y-mutant p53 promoted G1 to S phase transition with enlarged cell size and increased cyclin A1 and Cdk4 expression in HELF cells. These results indicate that mutation at the p53 H179Y residue up-regulates cyclin A1 and Cdk4 expression, and promotes HELF cell proliferation.  相似文献   

15.
PDK1 (3-phosphoinositide-dependent protein kinase 1) is a key mediator of signaling by phosphoinositide 3-kinase. To gain insight into the physiological importance of PDK1 in cell proliferation and cell cycle control, we established immortalized mouse embryonic fibroblasts (MEFs) from mice homozygous for a "floxed" allele of Pdk1 and from wild-type mice. Introduction of Cre recombinase by retrovirus-mediated gene transfer resulted in the depletion of PDK1 in Pdk1(lox/lox) MEFs but not in Pdk1(+/+) MEFs. The insulin-like growth factor-1-induced phosphorylation of various downstream effectors of PDK1, including Akt, glycogen synthase kinase 3, ribosomal protein S6, and p70 S6 kinase, was markedly inhibited in the PDK1-depleted (Pdk1-KO) MEFs. The rate of serum-induced cell proliferation was reduced; progression of the cell cycle from the G(0)-G(1) phase to the S phase was delayed, and cell cycle progression at G(2)-M phase was impaired in Pdk1-KO MEFs. These cells also manifested an increased level of p27(Kip1) expression and a reduced level of cyclin D1 expression during cell cycle progression. The defect in cell cycle progression from the G(0)-G(1) to the S phase in Pdk1-KO MEFs was rescued by forced expression of cyclin D1, whereas rescue of the defect in G(2)-M progression in these cells required both overexpression of cyclin D1 and depletion of p27(Kip1) by RNA interference. These data indicate that PDK1 plays an important role in cell proliferation and cell cycle progression by controlling the expression of both cyclin D1 and p27(Kip1).  相似文献   

16.
BACKGROUND: Helicobacter pylori gastritis increases gastric cancer risk. Microsatellite instability-type mutations are secondary to deficient DNA mismatch repair. H. pylori gastritis is more frequent in patients with microsatellite instability-positive gastric cancers, and H. pylori organisms independently of inflammation can reduce DNA mismatch repair protein levels, raising the hypothesis that H. pylori organisms might lead to mutagenesis during infection. MATERIALS AND METHODS: Mutations were detected using a green fluorescent protein reporter vector (pEGFP-CA13). Gastric cancer AGS cells transfected with pEGFP-CA13 were cocultured with H. pylori or Escherichia coli. The numbers of green fluorescent protein (GFP)-positive cells were determined, and GFP, hMSH2, and hMLH1 protein levels were measured by Western blot. The effect of H. pylori on CpG methylation status of hMLH1 was determined by methylation-specific polymerase chain reaction. RESULTS: GFP levels and GFP-positive cell numbers in AGS cells cocultured with H. pylori significantly increased, as the levels of hMLH1 and hMSH2 dropped. H. pylori cocultures induced low-level CpG methylation of the hMLH1 promoter. Sequence analysis of cells cocultured with H. pylori showed an increased number of frameshift mutations and point mutations as compared to cells not cocultured with H. pylori (p = .03 and p = .001, respectively). CONCLUSIONS: This is the first report showing that H. pylori bacteria may lead to accumulation of genomic mutations, independently of underlying inflammation. This is associated with reduced DNA mismatch repair, and is at least in part associated with CpG methylation of the hMLH1 promoter. These data support the notion that H. pylori-induced mutations and epigenetic alterations in gastric epithelial cells during chronic gastritis may contribute to an increased risk of gastric cancer associated with H. pylori infection.  相似文献   

17.
18.
The p53 tumor suppressor is a mutational target of environmental carcinogen anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE). We now demonstrate that p53 plays an important role in regulation of cellular responses to BPDE. Exposure of p53-null H1299 human lung cancer cells to BPDE resulted in S and G2 phase cell cycle arrest, but not mitotic block, which correlated with induction of cyclin B1 protein expression, down-modulation of cell division cycle 25C (Cdc25C) and Cdc25B protein levels, and hyperphosphorylation of Cdc25C (S216), cyclin-dependent kinase 1 (Cdk1; Y15), checkpoint kinase 1 (Chk1; S317 and S345) and Chk2 (T68). The BPDE-induced S phase block, but not the G2/M phase arrest, was significantly attenuated by knockdown of Chk1 protein level. The BPDE-mediated accumulation of sub-diploid fraction (apoptotic cells) was significantly decreased in H1299 cells transiently transfected with both Chk1 and Chk2 specific siRNAs. The H460 human lung cancer cell line (wild-type p53) was relatively more sensitive to BPDE-mediated growth inhibition and enrichment of sub-diploid apoptotic fraction compared with H1299 cells. The BPDE exposure failed to activate either S or G2 phase checkpoint in H460 cells. Instead, the BPDE-treated H460 cells exhibited a nearly 8-fold increase in sub-diploid apoptotic cells that was accompanied by phosphorylation of p53 at multiple sites. Knockdown of p53 protein level in H460 cells attenuated BPDE-induced apoptosis but enforced activation of S and G2 phase checkpoints. In conclusion, the present study points towards an important role of p53 in regulation of cellular responses to BPDE in human lung cancer cells.  相似文献   

19.
20.
Helicobacter pylori infection leads to gastroduodenal inflammation, peptic ulceration, and gastric carcinoma. Moreover, H. pylori may induce disease-specific protein expression in gastric epithelial cells. The present study was aimed at determining differentially expressed proteins in H. pylori-infected gastric epithelial AGS cells. AGS cells were treated with H. pylori at a bacterium/cell ratio of 300:1 for 12 h. Altered protein patterns as separated by two-dimensional electrophoresis using pH gradients of 4-7 were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. Four differentially expressed proteins, whose expression levels were increased by more than two-fold in H. pylori-infected cells, were analyzed. These proteins (14-3-3 protein alpha/beta, cullin homolog 3, alpha-enolase, ezrin) are known to be related to cell proliferation, cell adhesion, and carcinogenesis, and may be mediated by cellular stress, such as reactive oxygen species. In conclusion, the identification of these differentially expressed proteins provide valuable information for the understanding of the pathophysiologic mechanisms of H. pylori-induced gastric diseases, and may be useful as prognostic indices of H. pylori-related gastric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号