首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kang J  Dengler N 《Planta》2002,216(2):212-219
Tissue histogenesis during plant development depends on regulation of cell division plane, timing and frequency to produce cell units of correct size and shape for mature function. Differences among the dermal, ground and vascular tissue systems arise during development, largely through regulation of these aspects of cell cycling in relation to overall tissue expansion. Using a cyclin1At::GUS reporter construct, we demonstrate quantitative differences in cell cycling frequency among tissue systems and among primary, secondary, and tertiary veins; these differences are superimposed upon the more general longitudinal gradient of cell division frequency in developing leaves of Arabidopsis thaliana (L.) Heynh. Patterns of cell cycling frequency coincide almost exactly with those of the earliest known molecular marker of procambial identity, the HD-ZIP III homeobox gene ATHB-8, suggesting that ATHB-8 may play a role in regulating the early events of procambial development, including procambium-specific patterns of cell cycling. Cellular localization of cyc1At::GUS and ATHB-8::GUS within developing vascular strands indicates, however, that ATHB-8 has additional functions related to dorsiventral patterning within veins and cell differentiation events.  相似文献   

2.
Leaf plastids of the Arabidopsis pale cress (pac) mutant do not develop beyond the initial stages of differentiation from proplastids or etioplasts and contain only low levels of chlorophylls and carotenoids. Early in development, the epidermis and mesophyll of pac leaves resemble those of wild-type plants. In later stages, mutant leaves have enlarged intercellular spaces, and the palisade layer of the mesophyll can no longer be distinguished. To study the molecular basis of this phenotype, we cloned PAC and determined that this gene is regulated by light and has the capacity to encode an acidic, predominantly alpha-helical protein. The PAC gene appears to be a novel component of a light-induced regulatory network that controls the development of leaves and chloroplasts.  相似文献   

3.
This report describes the characterisation of ATHB16, a novel Arabidopsis thaliana homeobox gene, which encodes a homeodomain-leucine zipper class I (HDZip I) protein. We demonstrate that ATHB16 functions as a growth regulator, potentially as a component in the light-sensing mechanism of the plant. Endogenous ATHB16 mRNA was detected in all organs of Arabidopsis, at highest abundance in rosette leaves. Reduced levels of ATHB16 expression in transgenic Arabidopsis plants caused an increase in leaf cell expansion and consequently an increased size of the leaves, whereas leaf shape was unaffected. Transgenic plants with increased ATHB16 mRNA levels developed leaves that were smaller than wild-type leaves. Therefore, we suggest ATHB16 to act as a negative regulator of leaf cell expansion. Furthermore, the flowering time response to photoperiod was increased in plants with reduced ATHB16 levels but reduced in plants with elevated ATHB16 levels, indicating that ATHB16 has an additional role as a suppressor of the flowering time sensitivity to photoperiod in wild-type Arabidopsis. As deduced from the response of transgenic plants with altered levels of ATHB16 expression in hypocotyl elongation assays, the gene may act to regulate plant development as a mediator of a blue light response.  相似文献   

4.
In crop species, the impact of temperature on plant development is classically modelled using thermal time. We examined whether this method could be used in a non-crop species, Arabidopsis thaliana, to analyse the response to temperature of leaf initiation rate and of the development of two leaves of the rosette. The results confirmed the large plant-to-plant variability in the studied isogenic line of the Columbia ecotype: 100-fold differences in leaf area among plants sown on the same date were commonly observed at a given date. These differences disappeared in mature leaves, suggesting that they were due to a variability in plant developmental stage. The whole population could therefore be represented by any group of synchronous plants labelled at the two-leaf stage and followed during their development. Leaf initiation rate, duration of leaf expansion and maximal relative leaf expansion rate varied considerably among experiments performed at different temperatures (from 6 to 26 degrees C) but they were linearly related to temperature in the range 6-26 degrees C, with a common x-intercept of 3 degrees C. Expressing time in thermal time with a threshold temperature of 3 degrees C unified the time courses of leaf initiation and of individual leaf development for plants grown at different temperatures and experimental conditions. The two leaves studied (leaf 2 and leaf 6) had a two-phase development, with an exponential phase followed by a phase with decreasing relative elongation rate. Both phases had constant durations for a given leaf position if expressed in thermal time. Changes in temperature caused changes in both the rate of development and in the expansion rate which mutually compensated such that they had no consequence on leaf area at a given thermal time. The resulting model of leaf development was applied to ten experiments carried out in a glasshouse or in a growth chamber, with plants grown in soil or hydroponically. Because it predicts accurately the stage of development and the relative expansion rate of any leaf of the rosette, this model facilitates precise planning of sampling procedures and the comparison of treatments in growth analyses.  相似文献   

5.
In most crop species, primary productivity depends mainly on the leaf. However, the genes that contribute to the making of plant leaves remain largely unknown. With a view to identifying the genes involved in leaf development in Arabidopsis thaliana, we previously isolated EMS-induced mutants with abnormally shaped leaves and demonstrated that they fall into 94 complementation groups. We present here the map positions of 76 of these genes, which have been obtained using a high-throughput genetic mapping method, based on the simultaneous coamplification by PCR of 21 polymorphic microsatellites and the semiautomated fluorescent detection of the products. The map positions and F2 mapping populations obtained in this work will be instrumental in the positional cloning of these genes, which are essential for leaf development.  相似文献   

6.
7.
黄国文  韩玉珍  傅永福 《遗传》2013,35(1):93-100
植物的开花受多条途径的控制, 其中包括光周期途径、春化途径、赤霉素途径、自主途径和温敏途径。SUA41(SUMO substrate in Arabidopsis 41)是本实验室筛选到的、SUMO(Small ubiquitin modifier)的潜在底物, 并且前人的研究发现它参与自主途径的开花调节, 但其对开花时间的调节机制没有详细报道。文章对SUA41基因的表达、sua41突变体对不同环境条件的反应以及SUA41对开花时间调节的可能机制进行初步分析。结果显示, 与野生型相比, sua41突变体在常温或低温、长日或者短日条件下均为早花, 并且在低温和常温下的开花时间没有太大差别。过表达SUA41能够恢复sua41突变体的早花表型。SUA41基因在拟南芥的幼苗、根、茎、叶和花以及各个植物发育阶段都有表达, 说明SUA41基因是一个组成型表达基因。SUA41基因的表达与GA处理无关, 长日低温条件能够诱导SUA41基因的表达, 且在温敏途径突变体fve和fca中SUA41基因的表达量减少。与野生型比较, sua41突变体中CO基因的mRNA表达量没有明显变化, FT和SOC1基因表达量增加且FT增加幅度更大, FLC的mRNA表达量减少。结果表明SUA41基因虽然在自主途径中起作用, 但主要在温敏途径中参与拟南芥开花时间调节。  相似文献   

8.
9.
The genetic and phenotypic characterization of a new Arabidopsis mutant, de-etiolated -3, ( det 3), involved in light-regulated seedling development is described. A recessive mutation in the DET 3 gene uncouples light signals from a subset of light-dependent processes. The det 3 mutation causes dark-grown Arabidopsis thaliana seedlings to have short hypocotyls, expanded cotyledons, and differentiated leaves, traits characteristic of light-grown seedlings. Despite these morphological changes, however, the det 3 mutant does not develop chloroplasts or show elevated expression of nuclear- and chloroplast-encoded light-regulated mRNAs. The det 3 mutation thus uncovers a downstream branch of the light transduction pathways that separates leaf development from chloroplast differentiation and light-regulated gene expression. In addition, light-grown det 3 plants have reduced stature and apical dominance, suggesting that DET3 functions during growth in normal light conditions as well. The genetic interactions between mutations in det 1, det 2, and det 3 are described. The phenotypes of doubly mutant strains suggest that there are at least two parallel pathways controlling light-mediated development in Arabidopsis .  相似文献   

10.
11.
Auxin signaling in Arabidopsis leaf vascular development   总被引:13,自引:0,他引:13  
  相似文献   

12.
13.
14.
15.
Early leaf growth is sustained by cell proliferation and subsequent cell expansion that initiates at the leaf tip and proceeds in a basipetal direction. Using detailed kinematic and gene expression studies to map these stages during early development of the third leaf of Arabidopsis thaliana, we showed that the cell-cycle arrest front did not progress gradually down the leaf, but rather was established and abolished abruptly. Interestingly, leaf greening and stomatal patterning followed a similar basipetal pattern, but proliferative pavement cell and formative meristemoid divisions were uncoordinated in respect to onset and persistence. Genes differentially expressed during the transition from cell proliferation to expansion were enriched in genes involved in cell cycle, photosynthesis, and chloroplast retrograde signaling. Proliferating primordia treated with norflurazon, a chemical inhibitor of retrograde signaling, showed inhibited onset of cell expansion. Hence, differentiation of the photosynthetic machinery is important for regulating the exit from proliferation.  相似文献   

16.
Cell cycle-regulated gene expression in Arabidopsis   总被引:1,自引:0,他引:1  
  相似文献   

17.
Cell fate in the development of the Arabidopsis flower   总被引:3,自引:3,他引:0  
The Arabidopsis flower consists of four concentric whorls of organs. The first (outermost) whorl consists of four sepals and the fourth (innermost) whorl is made up of two carpels. Cell fate in the first and fourth whorls was studied using X-ray-induced yellow ch-42 sectors. Sector boundaries were found to be non-random around the two whorls and four generalizations relating the marked and unmarked tissues were deduced. In the sepal and carpel whorls the smallest sectors of marked and unmarked tissue were found to be one half of a sepal and one half of a carpel, respectively. A detailed frequency-distance map of the floral primordium was made and found to be a ridge with the fourth whorl carpels at the summit and the first whorl transverse sepal pair at the base. Consideration of: the rate of loss of chimerism in the inflorescence meristem, the frequency-distance across the flower and the frequency-distance between successive flowers, was used to produce an abstract model of the inflorescence meristem.  相似文献   

18.
19.
The cold-responsive (COR) genes play an important role in cold acclimation of higher plants. Here, a tight correlation between chloroplast functionality and COR15A expression, and the functional characterization of Arabidopsis COR15A involved in salt/osmotic stress, were revealed. COR15A gene is light inducible and expressed in light-grown seedlings. The expression level of COR15A was reduced when chloroplasts were damaged by norflurazon treatment. By using several albino mutants, seca1, secy1, and tic20, all of which exhibited severe defects in both structure and function of chloroplast, it was shown that the accumulation of COR15A mRNA depends on chloroplast functionality. Real-time RT-PCR and GUS-staining assays demonstrated that COR15A was induced by salt/osmotic stress partially via ABA. Overexpression of COR15A in Arabidopsis resulted in the seedlings displaying hypersensitivity to salt/osmotic stress. All these results suggest that plant acquire the ability to fully express COR15A only after the development of functional chloroplasts, COR15A may be involved in response to salt/osmotic stress during early stages of plant development.  相似文献   

20.
Growth of flowering stems in wild-type Arabidopsis is indeterminate. Many flowers arise sequentially on the flanks of apical meristems in a phyllotactic spiral. We have isolated eight recessive mutants of a gene, terminal flower, in which inflorescences become determinate. Flower primordia sooner or later ‘invade’ the meristem summit leading to cessation of its further growth. Primary apical meristems usually terminate with several part-flowers which lack pedicels, and several normal pedicellate flowers may arise first. By contrast apical meristems of secondary branches usually produce only a single pedicellate flower. Plant height is also reduced and more rosette inflorescences develop. These growth patterns occur in six strong mutants raised at 25°C under continuous light. In two weak mutants termination occurs much later with many more flowers arising before eventual termination. Termination is similarly delayed in at least one of the strong mutants grown at lower temperatures. The tfl mutation does not affect the indeterminate growth of flower meristems, at least in-so-far as this occurs in agamous mutants. The tfl locus is at the top of linkage group 5, close to RFLP 447. We propose that the TFL gene product supports the activity of an inhibitor of flower primordium initiation. This inhibitor would normally prevent flowers from arising on the inflorescence apex but in tfl mutants it may readily fall below its threshold of activity. The TFL gene may be one of a class responsible for evolutionary changes between indeterminate and determinate growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号