首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK–MAPKK–MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK–MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.  相似文献   

2.
MAP Kinase Pathways in the Yeast Saccharomyces cerevisiae   总被引:29,自引:0,他引:29       下载免费PDF全文
A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.  相似文献   

3.
促细胞分裂剂激活性蛋白激酶(MAPK)是一类存在于各种真核生物体中的丝氨酸/苏氨酸型蛋白激酶。它被上游激活因子MAPKK磷酸化而激活,并通过将底物蛋白上的丝氨酸和苏氨酸残基磷酸化而传递信号。它与其他一些信号分子组成MAPK级联信号通路,接受外界刺激信号,将信号转入细胞内,影响特定基因的表达,它的作用受到不同因子的调节。本文介绍了植物体中的MAPK的结构特点、作用机理、生物功能以及MAPK级联信号通路的调节。  相似文献   

4.
Abscisic acid (ABA) is a universal hormone in higher plants and plays a major role in various aspects of plant stress, growth, and development. Mitogen-activated protein kinase (MAPK) cascades are key signaling modules for responding to various extracellular stimuli in plants. The available data suggest that MAPK cascades are involved in some ABA responses, including antioxidant defense, guard cell signaling, and seed germination. Some MAPK phosphatases have also been demonstrated to be implicated in ABA responses. The goal of this review is to piece together the findings concerning MAPK cascades in ABA signaling. Questions and further perspectives of the roles played by MAPK cascades in ABA signaling are also furnished.  相似文献   

5.
Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells.  相似文献   

6.
MAPK级联途径参与ABA信号转导调节的植物生长发育过程   总被引:2,自引:0,他引:2  
植物激素ABA参与调控植物生长发育和生理代谢以及多种胁迫应答过程,促分裂原活化蛋白激酶(MAPK)级联途径应答于多种生物和非生物胁迫,广泛参与调控植物的生长发育。MAPK级联途径与ABA信号转导协同作用参与调控植物种子萌发、气孔运动和生长发育,本文主要归纳了植物中受ABA调控激活的MAPK级联途径成员,阐述了它们参与ABA信号转导调控植物生理反应和生长发育的过程,并对MAPK级联途径与ABA信号转导的研究方向作出了展望,指出对MAPK下游底物的筛选是完善MAPK级联途径的重要组成部分。  相似文献   

7.
Roles of MAP kinase cascades in Caenorhabditis elegans   总被引:1,自引:0,他引:1  
Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various cellular stresses. MAPK cascades are generally present as three-component modules, consisting of MAPKKK, MAPKK and MAPK. The precise molecular mechanisms by which these MAPK cascades transmit signals is an area of intense research, and our evolving understanding of these signal cascades has been facilitated in great part by genetic analyses in model organisms. One organism that has been commonly used for genetic manipulation and physiological characterization is the nematode Caenorhabditis elegans. Genes sequenced in the C. elegans genome project have furthered the identification of components involved in several MAPK pathways. Genetic and biochemical studies on these components have shed light on the physiological roles of MAPK cascades in the control of cell fate decision, neuronal function and immunity in C. elegans.  相似文献   

8.
M Takekawa  T Maeda    H Saito 《The EMBO journal》1998,17(16):4744-4752
MAPK (mitogen-activated protein kinase) cascades are common eukaryotic signaling modules that consist of a MAPK, a MAPK kinase (MAPKK) and a MAPKK kinase (MAPKKK). Because phosphorylation is essential for the activation of both MAPKKs and MAPKs, protein phosphatases are likely to be important regulators of signaling through MAPK cascades. To identify protein phosphatases that negatively regulate the stress-responsive p38 and JNK MAPK cascades, we screened human cDNA libraries for genes that down-regulated the yeast HOG1 MAPK pathway, which shares similarities with the p38 and JNK pathways, using a hyperactivating yeast mutant. In this screen, the human protein phosphatase type 2Calpha (PP2Calpha) was found to negatively regulate the HOG1 pathway in yeast. Moreover, when expressed in mammalian cells, PP2Calpha inhibited the activation of the p38 and JNK cascades induced by environmental stresses. Both in vivo and in vitro observations indicated that PP2Calpha dephosphorylated and inactivated MAPKKs (MKK6 and SEK1) and a MAPK (p38) in the stress-responsive MAPK cascades. Furthermore, a direct interaction of PP2Calpha and p38 was demonstrated by a co-immunoprecipitation assay. This interaction was observed only when cells were stimulated with stresses or when a catalytically inactive PP2Calpha mutant was used, suggesting that only the phosphorylated form of p38 interacts with PP2Calpha.  相似文献   

9.
真核生物的MAPK级联信号传递途径   总被引:15,自引:0,他引:15  
MAPK级联途径在真核生物细胞的信号传递过程中起着重要的作用.MAPK级联途径由MAPK、MAPKK和MAPKKK三类酶蛋白组成.这三类蛋白质的结构非常保守,通过磷酸化作用传递各种信号.在酵母和动、植物细胞中已经发现了一系列的MAPK级联途径成员,使真核生物的信号传递途径逐渐得到阐明.  相似文献   

10.
Mitogen-activated protein kinases and cerebral ischemia   总被引:18,自引:0,他引:18  
Mitogen-activated protein kinases (MAPKs) have crucial roles in signal transduction from the cell surface to the nucleus and regulate cell death and survival. Recent papers support the hypothesis that neuronal apoptosis and cerebral ischemia induce the robust activation of MAPK cascades. Although extracellular signal-regulated kinases pathways promote cell survival and proliferation, and c-Jun N-terminal protein kinases/p38 pathways induce apoptosis in general, the roles of MAPK cascades in neuronal death and survival seem to be complicated and altered by the type of cells and the magnitude and timing of insults. Some specific inhibitors of MAPK cascades provide important information in clarifying the roles of each molecule in neuronal death and survival, but the results are still controversial. Further studies are necessary to elucidate the activated signal transduction upstream and downstream of the cascades in cerebral ischemia, and to define the crosstalk between the cascades and other signaling pathways, before MAPK cascades can be candidate molecules in the treatment of cerebral ischemia.  相似文献   

11.
Mitogen-activated protein kinase cascades in plants: a new nomenclature   总被引:9,自引:0,他引:9  
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes, including yeasts, animals and plants. These protein phosphorylation cascades link extracellular stimuli to a wide range of cellular responses. In plants, MAPK cascades are involved in responses to various biotic and abiotic stresses, hormones, cell division and developmental processes. Completion of the Arabidopsis genome-sequencing project has revealed the existence of 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase kinases. Here, we propose a simplified nomenclature for Arabidopsis MAPKs and MAPK kinases that might also serve as a basis for standard annotation of these gene families in all plants.  相似文献   

12.
丝裂原活化蛋白激酶(MAPK)是酵母、动物和植物等真核生物中普遍存在和高度保守的一类信号转导通路,由MAPKKK、MAPKK和MAPK等3部分组成,在应对生物非生物胁迫、激素、细胞分裂调控及植物生长发育等过程中发挥重要作用。该文对近年来国内外有关MAPK级联通路的组成、在植株体内的生物学功能以及MAPK通路的失活进行了概述,旨在为今后MAPK通路介导的信号转导机制的研究提供参考依据。  相似文献   

13.
Chen H  Bai J  Ye J  Liu Z  Chen R  Mao W  Li A  Zhou J 《Cellular signalling》2007,19(6):1315-1327
Mitogen activated protein kinase (MAPK) cascades are thought to mediate diverse biological functions such as cell growth, differentiation and migration. Activated MAPK may affect microtubule (MT) which is essential for cellular polarity, differentiation and motility. Data in this study show that JWA, a newly identified novel microtubule-associated protein (MAP) was essential for the rearrangement of F-actin cytoskeleton and activation of MAPK cascades induced by arsenic trioxide (As2O3) and phorbol ester (PMA). Over-expression of JWA alone in HeLa, B16 and HCCLM3 cancer cells effectively inhibited cellular migration; whereas, cellular migration was significantly accelerated when cells were deficient in JWA expression. The mechanism underlying these phenomena might be due to JWA affected F-actin rearrangement. Furthermore, JWA deficiency blocked anti-migratory effect produced by As2O3 but enhanced the migratory effect initiated by PMA in HeLa cells. JWA SDR-SLR motifs are not only critical for the MAPK cascades activation, but also for cell migration. Further studies found that JWA differentially regulated cell migration via ERK downstream effectors focal adhesion kinase (FAK) and cyclooxygenase-2 (COX-2). Therefore, JWA regulated-tumor cellular migration might involve MAPK cascades activation and F-actin cytoskeleton rearrangement mechanisms. Our data provide an unexpected role for JWA in tumor cell migration behaviors.  相似文献   

14.
Signal transduction by MAP kinase cascades in budding yeast   总被引:16,自引:0,他引:16  
Budding yeast contain at least four distinct MAPK (mitogen activated protein kinase) cascades that transduce a variety of intracellular signals: mating-pheromone response, pseudohyphal/invasive growth, cell wall integrity, and high osmolarity adaptation. Although each MAPK cascade contains a conserved set of three protein kinases, the upstream activation mechanisms for these cascades are diverse, including a trimeric G protein, monomeric small G proteins, and a prokaryotic-like two-component system. Recently, it became apparent that there is extensive sharing of signaling elements among the MAPK pathways; however, little undesirable cross-talk occurs between various cascades. The formation of multi-protein signaling complexes is probably centrally important for this insulation of individual MAPK cascades.  相似文献   

15.
Mitogen activated protein kinases (MAPK) are important mediators in signal transmission, connecting the perception of external stimuli to cellular responses. MAPK cascades are involved in signalling various biotic and abiotic stresses, like wounding and pathogen infection, temperature stress or drought, but also some plant hormones, such as ethylene and auxin. Moreover, MAPKs have been implicated in cell cycle and developmental processes. In Arabidopsis mutant screens and in vivo assays several components of plant MAPK cascades have been identified. This review compares results obtained from functional analyses of MAPK cascades in plants with recent data obtained from searching the complete Arabidopsis genome. This analysis reveals that plants have an overall of 24 MAPK pathways of which only a small subset has been studied so far.  相似文献   

16.
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens.  相似文献   

17.
As they respond to numerous extracellular and intracellularstimuli, plants develop various morphological features and thecapacity for a large variety of physiological processes duringtheir growth. If we are to understand the molecular basis ofsuch developments, we must elucidate the way in which signalsgenerated by such stimuli can be transduced into plant cellsand transmitted by cellular components to induce the appropriateterminal events. In yeast and animal systems, signal pathwaysthat are known collectively as MAPK (mitogen-activated proteinkinase) cascades have been shown to play a central role in thetransmission of various signals. The components of these pathwaysinclude the MAPK family, the activator kinases of the MAPK family(the MAPKK family) and the activator kinases of the MAPKK family(the MAPKKK family). The members of each respective family arestructurally conserved and signals are transmitted by similarphosphotransfer reactions at corresponding steps that are mediatedby a specific member of each family in turn. Both cDNAs andgenes that encode putative homologues of these components haverecently been isolated from plant sources. Some of them havebeen shown to be related not only structurally but also functionallyto members of the MAPK cascades of other organisms. These findingssuggest that plants have signal pathways that are analogousto the MAPK cascades in yeast and animal cells but it remainsto be proven that plant homologues do in fact constitute kinasecascades. Given the presence of so many homologues of MAPKsand MAPKKKs in a single plant species, namely, Arabidopsis thaliana,we can be fairly confident that the putative MAPK cascades areinvolved in various physiological processes in plants. (Received March 28, 1995; )  相似文献   

18.
Functional organization of signal transduction into protein phosphorylation cascades, such as the mitogen-activated protein kinase (MAPK) cascades, greatly enhances the sensitivity of cellular targets to external stimuli. The sensitivity increases multiplicatively with the number of cascade levels, so that a tiny change in a stimulus results in a large change in the response, the phenomenon referred to as ultrasensitivity. In a variety of cell types, the MAPK cascades are imbedded in long feedback loops, positive or negative, depending on whether the terminal kinase stimulates or inhibits the activation of the initial level. Here we demonstrate that a negative feedback loop combined with intrinsic ultrasensitivity of the MAPK cascade can bring about sustained oscillations in MAPK phosphorylation. Based on recent kinetic data on the MAPK cascades, we predict that the period of oscillations can range from minutes to hours. The phosphorylation level can vary between the base level and almost 100% of the total protein. The oscillations of the phosphorylation cascades and slow protein diffusion in the cytoplasm can lead to intracellular waves of phospho-proteins.  相似文献   

19.
Plants rely on the innate immune system to defend themselves from pathogen attacks. Reactive oxygen species (ROS) and nitric oxide (NO) play key roles in the activation of disease resistance mechanisms in plants. The evolutionarily conserved mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules in eukaryotes and have been implicated in the plant innate immunity. There have been many disputations about the relationship between the radicals (ROS and NO) and MAPK cascades. Recently, we found that MAPK cascades participate in the regulation of the radical burst. Here, we discuss the regulatory mechanisms of the oxidative and NO bursts in response to pathogen attacks, and crosstalk between MAPK signaling and the radical burst.Key words: oxidative burst, MAPK, NADPH oxidase, NO burst, plant immunity  相似文献   

20.
Mitogen-activated protein kinase (MAPK) cascades can operate as bistable switches residing in either of two different stable states. MAPK cascades are often embedded in positive feedback loops, which are considered to be a prerequisite for bistable behavior. Here we demonstrate that in the absence of any imposed feedback regulation, bistability and hysteresis can arise solely from a distributive kinetic mechanism of the two-site MAPK phosphorylation and dephosphorylation. Importantly, the reported kinetic properties of the kinase (MEK) and phosphatase (MKP3) of extracellular signal-regulated kinase (ERK) fulfill the essential requirements for generating a bistable switch at a single MAPK cascade level. Likewise, a cycle where multisite phosphorylations are performed by different kinases, but dephosphorylation reactions are catalyzed by the same phosphatase, can also exhibit bistability and hysteresis. Hence, bistability induced by multisite covalent modification may be a widespread mechanism of the control of protein activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号