首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting the structural fold of a protein is an important and challenging problem. Available computer programs for determining whether a protein sequence is compatible with a known 3-dimensional structure fall into 2 categories: (1) structure-based methods, in which structural features such as local conformation and solvent accessibility are encoded in a template, and (2) sequence-based methods, in which aligned sequences of a set of related proteins are encoded in a template. In both cases, the programs use a static template based on a predetermined set of proteins. Here, we describe a computer-based method, called iterative template refinement (ITR), that uses templates combining structure-based and sequence-based information and employs an iterative search procedure to detect related proteins and sequentially add them to the templates. Starting from a single protein of known structure, ITR performs sequential cycles of database search to construct an expanding tree of templates with the aim of identifying subtle relationships among proteins. Evaluating the performance of ITR on 6 proteins, we found that the method automatically identified a variety of subtle structural similarities to other proteins. For example, the method identified structural similarity between arabinose-binding protein and phosphofructokinase, a relationship that has not been widely recognized.  相似文献   

2.
C Sander  R Schneider 《Proteins》1991,9(1):56-68
The database of known protein three-dimensional structures can be significantly increased by the use of sequence homology, based on the following observations. (1) The database of known sequences, currently at more than 12,000 proteins, is two orders of magnitude larger than the database of known structures. (2) The currently most powerful method of predicting protein structures is model building by homology. (3) Structural homology can be inferred from the level of sequence similarity. (4) The threshold of sequence similarity sufficient for structural homology depends strongly on the length of the alignment. Here, we first quantify the relation between sequence similarity, structure similarity, and alignment length by an exhaustive survey of alignments between proteins of known structure and report a homology threshold curve as a function of alignment length. We then produce a database of homology-derived secondary structure of proteins (HSSP) by aligning to each protein of known structure all sequences deemed homologous on the basis of the threshold curve. For each known protein structure, the derived database contains the aligned sequences, secondary structure, sequence variability, and sequence profile. Tertiary structures of the aligned sequences are implied, but not modeled explicitly. The database effectively increases the number of known protein structures by a factor of five to more than 1800. The results may be useful in assessing the structural significance of matches in sequence database searches, in deriving preferences and patterns for structure prediction, in elucidating the structural role of conserved residues, and in modeling three-dimensional detail by homology.  相似文献   

3.
A method for protein structure prediction has been developed, which evaluates the compatibility of an amino acid sequence with known 3-dimensional structures and identifies the most likely structure. The method was applied to a large number of sequences in a database, and the structures of the following proteins were predicted: (1) shikimate kinase (SKase), (2) the hydrophilic subunit of mannose permease (IIABMan), (3) rat tyrosine aminotransferase (Tyr AT), and (4) threonine dehydratase (TDH). The functional and evolutionary implications of the predictions are discussed. (1) The structural similarity between SKase and adenylate kinase was predicted. Alignment of their sequences reveals that the ATP-binding type A sequence motif and 2 ATP-binding arginine residues are conserved. The prediction suggests a similarity in their functional mechanisms as well as an evolutionary relationship. (2) The structural similarity between IIABMan and galactose/glucose-binding protein (GGBP) was predicted. The IIA and IIB domains are aligned with the N- and C-terminal domains of GGBP, respectively. The 2 phosphorylated residues, His 10 and His 175, of IIABMan are threaded onto loops located in the substrate-binding cleft of GGBP. The prediction accounts for the phosphoryl transfer from His 10 to His 175, and to the sugar substrate. (3) The structural similarity between rat Tyr AT and Escherichia coli aspartate AT was predicted, as well as (4) the structural similarity between TDH and the tryptophan synthase beta subunit. Predictions (3) and (4) support the previous predictions based on observations of the functional similarities between the proteins.  相似文献   

4.
Several recent publications illustrated advantages of using sequence profiles in recognizing distant homologies between proteins. At the same time, the practical usefulness of distant homology recognition depends not only on the sensitivity of the algorithm, but also on the quality of the alignment between a prediction target and the template from the database of known proteins. Here, we study this question for several supersensitive protein algorithms that were previously compared in their recognition sensitivity (Rychlewski et al., 2000). A database of protein pairs with similar structures, but low sequence similarity is used to rate the alignments obtained with several different methods, which included sequence-sequence, sequence-profile, and profile-profile alignment methods. We show that incorporation of evolutionary information encoded in sequence profiles into alignment calculation methods significantly increases the alignment accuracy, bringing them closer to the alignments obtained from structure comparison. In general, alignment quality is correlated with recognition and alignment score significance. For every alignment method, alignments with statistically significant scores correlate with both correct structural templates and good quality alignments. At the same time, average alignment lengths differ in various methods, making the comparison between them difficult. For instance, the alignments obtained by FFAS, the profile-profile alignment algorithm developed in our group are always longer that the alignments obtained with the PSI-BLAST algorithms. To address this problem, we develop methods to truncate or extend alignments to cover a specified percentage of protein lengths. In most cases, the elongation of the alignment by profile-profile methods is reasonable, adding fragments of similar structure. The examples of erroneous alignment are examined and it is shown that they can be identified based on the model quality.  相似文献   

5.
Twilight zone of protein sequence alignments   总被引:38,自引:0,他引:38  
Sequence alignments unambiguously distinguish between protein pairs of similar and non-similar structure when the pairwise sequence identity is high (>40% for long alignments). The signal gets blurred in the twilight zone of 20-35% sequence identity. Here, more than a million sequence alignments were analysed between protein pairs of known structures to re-define a line distinguishing between true and false positives for low levels of similarity. Four results stood out. (i) The transition from the safe zone of sequence alignment into the twilight zone is described by an explosion of false negatives. More than 95% of all pairs detected in the twilight zone had different structures. More precisely, above a cut-off roughly corresponding to 30% sequence identity, 90% of the pairs were homologous; below 25% less than 10% were. (ii) Whether or not sequence homology implied structural identity depended crucially on the alignment length. For example, if 10 residues were similar in an alignment of length 16 (>60%), structural similarity could not be inferred. (iii) The 'more similar than identical' rule (discarding all pairs for which percentage similarity was lower than percentage identity) reduced false positives significantly. (iv) Using intermediate sequences for finding links between more distant families was almost as successful: pairs were predicted to be homologous when the respective sequence families had proteins in common. All findings are applicable to automatic database searches.  相似文献   

6.
7.
Multiple sequence alignment is a fundamental tool in a number of different domains in modern molecular biology, including functional and evolutionary studies of a protein family. Multiple alignments also play an essential role in the new integrated systems for genome annotation and analysis. Thus, the development of new multiple alignment scores and statistics is essential, in the spirit of the work dedicated to the evaluation of pairwise sequence alignments for database searching techniques. We present here norMD, a new objective scoring function for multiple sequence alignments. NorMD combines the advantages of the column-scoring techniques with the sensitivity of methods incorporating residue similarity scores. In addition, norMD incorporates ab initio sequence information, such as the number, length and similarity of the sequences to be aligned. The sensitivity and reliability of the norMD objective function is demonstrated using structural alignments in the SCOP and BAliBASE databases. The norMD scores are then applied to the multiple alignments of the complete sequences (MACS) detected by BlastP with E-value<10, for a set of 734 hypothetical proteins encoded by the Vibrio cholerae genome. Unrelated or badly aligned sequences were automatically removed from the MACS, leaving a high-quality multiple alignment which could be reliably exploited in a subsequent functional and/or structural annotation process. After removal of unreliable sequences, 176 (24 %) of the alignments contained at least one sequence with a functional annotation. 103 of these new matches were supported by significant hits to the Interpro domain and motif database.  相似文献   

8.
Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the "structurally variable" regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of 'variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been illustrated through examples where the equivalent regions in homologous protein structures share sequence similarity to varied extent but do not preserve local structure.  相似文献   

9.
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.  相似文献   

10.
Regions of rare conformation were located in 300 protein crystal structures representing seven major protein folds. A distance matrix algorithm was used to search rapidly for 9-residue fragments of rare backbone conformation using a comparison to a relational database of encoded fragments derived from the database of nonredundant structures. Rare fragments were found in 61% of the analyzed protein structures. Detailed analysis was performed for 78 proteins of different folds. The rare fragments were located near functional sites in 72% of the protein structures. The rare fragments often formed parts of ligand-binding sites (59%), protein-protein interfaces (8%), and domain-domain contacts (5%). Of the remaining structures, 5% had a high average B-factor or high local B-factors. Statistical analysis suggests that the association between ligands and rare regions does not occur by chance alone. The present study is likely to underestimate the number of functional sites, because not all analyzed protein structures contained a ligand. The results suggest that rapid searches for regions with rare local backbone conformations can assist in prediction of functional sites in novel proteins.  相似文献   

11.

Background

Functional similarity is challenging to identify when global sequence and structure similarity is low. Active-sites or functionally relevant regions are evolutionarily more stable relative to the remainder of a protein structure and provide an alternative means to identify potential functional similarity between proteins. We recently developed the FAST-NMR methodology to discover biochemical functions or functional hypotheses of proteins of unknown function by experimentally identifying ligand binding sites. FAST-NMR utilizes our CPASS software and database to assign a function based on a similarity in the structure and sequence of ligand binding sites between proteins of known and unknown function.

Methodology/Principal Findings

The PrgI protein from Salmonella typhimurium forms the needle complex in the type III secretion system (T3SS). A FAST-NMR screen identified a similarity between the ligand binding sites of PrgI and the Bcl-2 apoptosis protein Bcl-xL. These ligand binding sites correlate with known protein-protein binding interfaces required for oligomerization. Both proteins form membrane pores through this oligomerization to release effector proteins to stimulate cell death. Structural analysis indicates an overlap between the PrgI structure and the pore forming motif of Bcl-xL. A sequence alignment indicates conservation between the PrgI and Bcl-xL ligand binding sites and pore formation regions. This active-site similarity was then used to verify that chelerythrine, a known Bcl-xL inhibitor, also binds PrgI.

Conclusions/Significance

A structural and functional relationship between the bacterial T3SS and eukaryotic apoptosis was identified using our FAST-NMR ligand affinity screen in combination with a bioinformatic analysis based on our CPASS program. A similarity between PrgI and Bcl-xL is not readily apparent using traditional global sequence and structure analysis, but was only identified because of conservation in ligand binding sites. These results demonstrate the unique opportunity that ligand-binding sites provide for the identification of functional relationships when global sequence and structural information is limited.  相似文献   

12.
Here, we discuss the relationship between protein sequence and protein structural similarity. It is established that a protein structural distance (PSD) of 2.0 is a threshold above which two proteins are unlikely to have a detectable pairwise sequence relationship. A precise correlation is established between the level of sequence similarity, defined by a normalized Smith-Waterman score, and the probability that two proteins will have a similar structure (defined by pairwise PSD<2). This correlation can be used in evaluating the likelihood for success in a comparative modeling procedure. We establish the existence of a correlation between sequence and structural similarity for pairs of proteins that are related in structure but whose sequence relationship is not detectable using standard pairwise sequence alignments. Although it is well known that there is a close relationship between sequence and structural similarity for pairwise sequence identities greater than about 30 %, there has been little discussion as to the possible existence of such a relationship for pairs of proteins in or below the twilight zone of sequence similarity (<25 % pairwise sequence identity). Possible implications of our results for the evolution of protein structure are discussed.  相似文献   

13.
Pei J  Grishin NV 《Proteins》2004,56(4):782-794
We study the effects of various factors in representing and combining evolutionary and structural information for local protein structural prediction based on fragment selection. We prepare databases of fragments from a set of non-redundant protein domains. For each fragment, evolutionary information is derived from homologous sequences and represented as estimated effective counts and frequencies of amino acids (evolutionary frequencies) at each position. Position-specific amino acid preferences called structural frequencies are derived from statistical analysis of discrete local structural environments in database structures. Our method for local structure prediction is based on ranking and selecting database fragments that are most similar to a target fragment. Using secondary structure type as a local structural property, we test our method in a number of settings. The major findings are: (1) the COMPASS-type scoring function for fragment similarity comparison gives better prediction accuracy than three other tested scoring functions for profile-profile comparison. We show that the COMPASS-type scoring function can be derived both in the probabilistic framework and in the framework of statistical potentials. (2) Using the evolutionary frequencies of database fragments gives better prediction accuracy than using structural frequencies. (3) Finer definition of local environments, such as including more side-chain solvent accessibility classes and considering the backbone conformations of neighboring residues, gives increasingly better prediction accuracy using structural frequencies. (4) Combining evolutionary and structural frequencies of database fragments, either in a linear fashion or using a pseudocount mixture formula, results in improvement of prediction accuracy. Combination at the log-odds score level is not as effective as combination at the frequency level. This suggests that there might be better ways of combining sequence and structural information than the commonly used linear combination of log-odds scores. Our method of fragment selection and frequency combination gives reasonable results of secondary structure prediction tested on 56 CASP5 targets (average SOV score 0.77), suggesting that it is a valid method for local protein structure prediction. Mixture of predicted structural frequencies and evolutionary frequencies improve the quality of local profile-to-profile alignment by COMPASS.  相似文献   

14.
Ovotransferrin and lactoferrin are iron-binding proteins with antiviral and antibacterial activities related to natural immunity, showing marked sequence and structural homologies. The antiviral activity of two hen ovotransferrin fragments DQKDEYELL (hOtrf(219-227)) and KDLLFK (hOtrf(269-301) and hOtrf(633-638)) towards Marek's disease virus infection of chicken embryo fibroblasts is reported here. These fragments have sequence homology with two bovine lactoferrin fragments with antiviral activity towards herpes simplex virus, suggesting that these fragments could have a role for the exploitation of the antiviral activity of the intact proteins towards herpes viruses. NMR analysis showed that these peptides, chemically synthetized, did not possess any favourite conformation in solution, indicating that both the aminoacid sequence and the conformation they display in the intact protein are essential for the antiviral activity.  相似文献   

15.

Background  

Protein sequence alignments have become indispensable for virtually any evolutionary, structural or functional study involving proteins. Modern sequence search and comparison methods combined with rapidly increasing sequence data often can reliably match even distantly related proteins that share little sequence similarity. However, even highly significant matches generally may have incorrectly aligned regions. Therefore when exact residue correspondence is used to transfer biological information from one aligned sequence to another, it is critical to know which alignment regions are reliable and which may contain alignment errors.  相似文献   

16.

Background  

The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins.  相似文献   

17.
The database PALI (Phylogeny and ALIgnment of homologous protein structures) consists of families of protein domains of known three-dimensional (3D) structure. In a PALI family, every member has been structurally aligned with every other member (pairwise) and also simultaneous superposition (multiple) of all the members has been performed. The database also contains 3D structure-based and structure-dependent sequence similarity-based phylogenetic dendrograms for all the families. The PALI release used in the present analysis comprises 225 families derived largely from the HOMSTRAD and SCOP databases. The quality of the multiple rigid-body structural alignments in PALI was compared with that obtained from COMPARER, which encodes a procedure based on properties and relationships. The alignments from the two procedures agreed very well and variations are seen only in the low sequence similarity cases often in the loop regions. A validation of Direct Pairwise Alignment (DPA) between two proteins is provided by comparing it with Pairwise alignment extracted from Multiple Alignment of all the members in the family (PMA). In general, DPA and PMA are found to vary rarely. The ready availability of pairwise alignments allows the analysis of variations in structural distances as a function of sequence similarities and number of topologically equivalent Calpha atoms. The structural distance metric used in the analysis combines root mean square deviation (r.m.s.d.) and number of equivalences, and is shown to vary similarly to r.m.s.d. The correlation between sequence similarity and structural similarity is poor in pairs with low sequence similarities. A comparison of sequence and 3D structure-based phylogenies for all the families suggests that only a few families have a radical difference in the two kinds of dendrograms. The difference could occur when the sequence similarity among the homologues is low or when the structures are subjected to evolutionary pressure for the retention of function. The PALI database is expected to be useful in furthering our understanding of the relationship between sequences and structures of homologous proteins and their evolution.  相似文献   

18.
Lin HN  Notredame C  Chang JM  Sung TY  Hsu WL 《PloS one》2011,6(12):e27872
Most sequence alignment tools can successfully align protein sequences with higher levels of sequence identity. The accuracy of corresponding structure alignment, however, decreases rapidly when considering distantly related sequences (<20% identity). In this range of identity, alignments optimized so as to maximize sequence similarity are often inaccurate from a structural point of view. Over the last two decades, most multiple protein aligners have been optimized for their capacity to reproduce structure-based alignments while using sequence information. Methods currently available differ essentially in the similarity measurement between aligned residues using substitution matrices, Fourier transform, sophisticated profile-profile functions, or consistency-based approaches, more recently.In this paper, we present a flexible similarity measure for residue pairs to improve the quality of protein sequence alignment. Our approach, called SymAlign, relies on the identification of conserved words found across a sizeable fraction of the considered dataset, and supported by evolutionary analysis. These words are then used to define a position specific substitution matrix that better reflects the biological significance of local similarity. The experiment results show that the SymAlign scoring scheme can be incorporated within T-Coffee to improve sequence alignment accuracy. We also demonstrate that SymAlign is less sensitive to the presence of structurally non-similar proteins. In the analysis of the relationship between sequence identity and structure similarity, SymAlign can better differentiate structurally similar proteins from non- similar proteins. We show that protein sequence alignments can be significantly improved using a similarity estimation based on weighted n-grams. In our analysis of the alignments thus produced, sequence conservation becomes a better indicator of structural similarity. SymAlign also provides alignment visualization that can display sub-optimal alignments on dot-matrices. The visualization makes it easy to identify well-supported alternative alignments that may not have been identified by dynamic programming. SymAlign is available at http://bio-cluster.iis.sinica.edu.tw/SymAlign/.  相似文献   

19.
We report the latest release (version 1.6) of the CATH protein domains database (http://www.biochem.ucl. ac.uk/bsm/cath ). This is a hierarchical classification of 18 577 domains into evolutionary families and structural groupings. We have identified 1028 homo-logous superfamilies in which the proteins have both structural, and sequence or functional similarity. These can be further clustered into 672 fold groups and 35 distinct architectures. Recent developments of the database include the generation of 3D templates for recognising structural relatives in each fold group, which has led to significant improvements in the speed and accuracy of updating the database and also means that less manual validation is required. We also report the establishment of the CATH-PFDB (Protein Family Database), which associates 1D sequences with the 3D homologous superfamilies. Sequences showing identifiable homology to entries in CATH have been extracted from GenBank using PSI-BLAST. A CATH-PSIBLAST server has been established, which allows you to scan a new sequence against the database. The CATH Dictionary of Homologous Superfamilies (DHS), which contains validated multiple structural alignments annotated with consensus functional information for evolutionary protein superfamilies, has been updated to include annotations associated with sequence relatives identified in GenBank. The DHS is a powerful tool for considering the variation of functional properties within a given CATH superfamily and in deciding what functional properties may be reliably inherited by a newly identified relative.  相似文献   

20.
The availability of fast and robust algorithms for protein structure comparison provides an opportunity to produce a database of three-dimensional comparisons, called families of structurally similar proteins (FSSP). The database currently contains an extended structural family for each of 154 representative (below 30% sequence identity) protein chains. Each data set contains: the search structure; all its relatives with 70-30% sequence identity, aligned structurally; and all other proteins from the representative set that contain substructures significantly similar to the search structure. Very close relatives (above 70% sequence identity) rarely have significant structural differences and are excluded. The alignments of remote relatives are the result of pairwise all-against-all structural comparisons in the set of 154 representative protein chains. The comparisons were carried out with each of three novel automatic algorithms that cover different aspects of protein structure similarity. The user of the database has the choice between strict rigid-body comparisons and comparisons that take into account interdomain motion or geometrical distortions; and, between comparisons that require strictly sequential ordering of segments and comparisons, which allow altered topology of loop connections or chain reversals. The data sets report the structurally equivalent residues in the form of a multiple alignment and as a list of matching fragments to facilitate inspection by three-dimensional graphics. If substructures are ignored, the result is a database of structure alignments of full-length proteins, including those in the twilight zone of sequence similarity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号