首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The number of reported cases of Human African Trypanosmiasis (HAT), caused by kinetoplastid protozoan parasite Trypanosoma brucei, is declining in sub-Saharan Africa. Historically, such declines are generally followed by periods of higher incidence, and one of the lingering public health challenges of HAT is that its drug development pipeline is historically sparse. As a continuation of our work on new antitrypanosomal agents, we found that partially saturated quinoline-based vinyl sulfone compounds selectively inhibit the growth of T. brucei but displayed relatively weak inhibitory activity towards T. brucei’s cysteine protease rhodesain. While two nitroaromatic analogues of the quinoline-based vinyl sulfone compounds displayed potent inhibition of T. brucei and rhodesain. The quinoline derivatives and the nitroaromatic-based compounds discovered in this work can serve as leads for ADME-based optimization and pre-clinical investigations.  相似文献   

2.
A new family of potent N-alkoxyvinylsulfonamide inhibitors of cruzain have been developed. Inhibitor 13 has a second order inactivation rate constant of 6,480,000s(-1)M(-1) versus cruzain, and is also highly effective against Trypanosoma cruzi trypomastigotes in a tissue culture assay.  相似文献   

3.
Cysteine proteases of the malaria parasite Plasmodium falciparum, known as falcipains, are promising targets for antimalarial chemotherapy. We evaluated cultured parasites for the stage-specific expression of cysteine proteases and sensitivity to cysteine protease inhibitors. Protease activity and inhibitor sensitivity varied markedly over time. Cysteine protease activity was greatest in early trophozoites, while sensitivity to cysteine protease inhibitors was greatest in mature trophozoites. Our results indicate the importance of considering the stage-specific effects of antimalarials and are consistent with the conclusion that the principal antimalarial activity of cysteine protease inhibitors is due to a block in hemoglobin hydrolysis.  相似文献   

4.
We disclose here a series of P4-benzoxaborole-substituted macrocyclic HCV protease inhibitors. These inhibitors are potent against HCV NS3 protease, their anti-HCV replicon potencies are largely impacted by substitutions on benzoxaborole ring system and P21 groups. P21 2-thiazole-isoquinoline provides best replicon potency. The in vitro SAR studies and in vivo PK evaluations of selected compounds are described herein.  相似文献   

5.
Cysteine protease B (CPB) can be targeted by reversible covalent inhibitors that could serve as antileishmanial compounds. Here, sixteen dipeptidyl nitrile derivatives were synthesized, tested against CPB, and analyzed using matched molecular pairs to determine the effects of stereochemistry and p-phenyl substitution on enzyme inhibition. The compound (S)-2-(((S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl)amino)-N-(1-cyanocyclopropyl)-3-phenylpropanamide (5) was the most potent CPB inhibitor (pKi = 6.82), which was also selective for human cathepsin B (pKi < 5). The inversion of the stereochemistry from S to R was more detrimental to potency when placed at the P2 position than at P3. The p-Br derivatives were more potent than the p-CH3 and p-OCH3 derivatives, probably due to intermolecular interactions with the S3 subsite.  相似文献   

6.
High-resolution crystal structures are described for seven macrocycles complexed with HIV-1 protease (HIVPR). The macrocycles possess two amides and an aromatic group within 15-17 membered rings designed to replace N- or C-terminal tripeptides from peptidic inhibitors of HIVPR. Appended to each macrocycle is a transition state isostere and either an acyclic peptide, nonpeptide, or another macrocycle. These cyclic analogues are potent inhibitors of HIVPR, and the crystal structures show them to be structural mimics of acyclic peptides, binding in the active site of HIVPR via the same interactions. Each macrocycle is restrained to adopt a beta-strand conformation which is preorganized for protease binding. An unusual feature of the binding of C-terminal macrocyclic inhibitors is the interaction between a positively charged secondary amine and a catalytic aspartate of HIVPR. A bicyclic inhibitor binds similarly through its secondary amine that lies between its component N-terminal and C-terminal macrocycles. In contrast, the corresponding tertiary amine of the N-terminal macrocycles does not interact with the catalytic aspartates. The amine-aspartate interaction induces a 1.5 A N-terminal translation of the inhibitors in the active site and is accompanied by weakened interactions with a water molecule that bridges the ligand to the enzyme, as well as static disorder in enzyme flap residues. This flexibility may facilitate peptide cleavage and product dissociation during catalysis. Proteases [Aba67,95]HIVPR and [Lys7,Ile33,Aba67,95]HIVPR used in this work were shown to have very similar crystal structures.  相似文献   

7.
The 17-membered phenylalanine-based macrocycle 6 was prepared starting from 3-iodo-phenylalanine. Macrocyclization of alkene phenyl iodide 5 was effected through a palladium-catalyzed Heck reaction. The macrocyclic alpha-ketoamides were active inhibitors of the HCV NS3 protease, with the C-terminal acids and amides being more potent than tert-butyl esters.  相似文献   

8.
9.
Cathepsin K (EC 3.4.22.38) is a cysteine protease of the papain superfamily which is selectively expressed within the osteoclast. Several lines of evidence have pointed to the fact that this protease may play an important role in the degradation of the bone matrix. Potent and selective inhibitors of cathepsin K could be important therapeutic agents for the control of excessive bone resorption. Recently a series of peptide aldehydes have been shown to be potent inhibitors of cathepsin K. In an effort to design more selective and metabolically stable inhibitors of cathepsin K, a series of electronically attenuated alkoxymethylketones and thiomethylketones inhibitors have been synthesized. The X-ray co-crystal structure of one of these analogues in complex with cathepsin K shows the inhibitor binding in the primed side of the enzyme active site with a covalent interaction between the active site cysteine 25 and the carbonyl carbon of the inhibitor.  相似文献   

10.
The synthesis and biological evaluation of a new class of selective irreversible cysteine protease inhibitors is described. A set of amino acid based chloromethyl sulfoxides was prepared and they were found to inhibit irreversibly the cysteine protease papain. They were selective for cysteine proteases since no inhibition was found for the serine protease chymotrypsin.  相似文献   

11.
Allicin and derivatives thereof inhibit the CAC1 cysteine proteases falcipain 2, rhodesain, cathepsin B and L in the low micromolar range. The structure–activity relationship revealed that only derivatives with primary carbon atom in vicinity to the thiosulfinate sulfur atom attacked by the active-site Cys residue are active against the target enzymes. Some compounds also show potent antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei brucei.  相似文献   

12.
Two kininogens are found in mammalian sera: HK (high molecular weight kininogen) and LK (low molecular weight kininogen) with the exception of the rat which encompasses a third kininogen, T-Kininogen (TK). Kininogens are multifunctional glycosylated molecules related to cystatins (clan IH, family I25). They harbor three cystatin domains but only two of them are tight-binding inhibitors of cysteine cathepsins. HK and LK, but not TK, are precursors of potent peptide hormones, the kinins, which are released proteolytically by tissue and plasma kallikreins. Besides these classical features novel functions of kininogens have been recently discovered; they are described in the second part of this review. HKa, which corresponds to the kinin-free two-chain HK and its isolated domain D5 (kininostatin), possesses angiostatic and pro-apoptotic properties, inhibits the proliferation of endothelial cells and participates in the regulation of angiogenesis. Moreover, some HK-derived peptides display potent and broad-spectrum microbicidal properties against both Gram-positive and Gram-negative bacteria, and thus may offer a promising alternative to conventional antibiotic therapy. Of seminal interest, a kininogen-derived peptide inhibits activation of the contact phase system of coagulation and protects mice with invasive Streptococcus pyogenes infection from pulmonary lesions. On the other hand, TK is a biomarker of aging at the end of lifespan of elderly rats. However, although TK has been initially identified as an acute phase reactant, and earlier known as alpha-l-acute phase globulin, the increase of TK in liver and plasma is not known to relate to any inflammatory event during the senescence process.  相似文献   

13.
Efficient synthesis of two novel analogues of some known protease inhibitors, via the isosteric replacement of oxirane/aziridine moiety of the parent compounds by cyclopropane ring, is described.  相似文献   

14.
Analogues of the irreversible protease inhibitors TPCK and TLCK have been synthesized and tested as inhibitors of the bacterial cysteine protease IdeS excreted by Streptococcus pyogenes. Eight compounds were identified as inhibitors of IdeS in an in vitro assay. The most potent compounds contained an aldehyde function, thus acting as efficient reversible inhibitors, nitrile and azide derivatives showed moderate activity.  相似文献   

15.
The effects on potency of cruzain inhibition of replacing a nitrile group with alternative warheads were explored. The oxime was almost an order of magnitude more potent than the corresponding nitrile and has the potential to provide access to the prime side of the catalytic site. Dipeptide aldehydes and azadipeptide nitriles were found to be two orders of magnitude more potent cruzain inhibitors than the corresponding dipeptide nitriles although potency differences were modulated by substitution at P1 and P3. Replacement of the α methylene of a dipeptide aldehyde with cyclopropane led to a loss of potency of almost three orders of magnitude. The vinyl esters and amides that were characterized as reversible inhibitors were less potent than the corresponding nitrile by between one and two orders of magnitude.  相似文献   

16.
The design and synthesis of macrocyclic inhibitors of human rhinovirus 3C protease is described. A macrocyclic linkage of the P1 and P3 residues, and the subsequent structure-based optimization of the macrocycle conformation and size led to the identification of a potent biochemical inhibitor 10 with sub-micromolar antiviral activity.  相似文献   

17.
This research investigates the synthesis and inhibitory potency of a series of novel dipeptidyl allyl sulfones as clan CA cysteine protease inhibitors. The structure of the inhibitors consists of a R1-Phe-R2-AS-Ph scaffold (AS?=?allyl sulfone). R1 was varied with benzyloxycarbonyl, morpholinocarbonyl, or N-methylpiperazinocarbonyl substituents. R2 was varied with either Phe of Hfe residues. Synthesis involved preparation of vinyl sulfone analogues followed by isomerization to allyl sulfones using n-butyl lithium and t-butyl hydroperoxide. Sterics, temperature and base strength were all factors that affected the formation and stereochemistry of the allyl sulfone moiety. The inhibitors were assayed with three clan CA cysteine proteases (cruzain, cathepsin B and calpain I) as well as one serine protease (trypsin). The most potent inhibitor, (E)-Mu-Phe-Hfe-AS-Ph, displayed at least 10-fold selectivity for cruzain over clan CA cysteine proteases cathepsin B and calpain I with a kobs/[I] of 6080?±?1390?M?1s?1.  相似文献   

18.
The crystal structures of two hydroxymethyl ketone inhibitors complexed to the cysteine protease cruzain have been determined at 1.1 and 1.2 A resolution, respectively. These high resolution crystal structures provide the first structures of non-covalent inhibitors bound to cruzain. A series of compounds were prepared and tested based upon the structures providing further insight into the key binding interactions.  相似文献   

19.
A series of 1,4-naphthoquinone derivatives diversely substituted at C-2, C-3, C-5 and C-8, prepared by reaction of amines, amino acids and alcohols with commercial 1,4-naphthoquinones, has been evaluated against papain and bovine spleen cathepsin B. These 1,4-naphthoquinone derivatives were found to be irreversible inhibitors for both cysteine proteases, with second-order rate constants, k(2), ranging from 0.67 to 35.4M(-1)s(-1) for papain, and from 0.54 to 8.03M(-1)s(-1) for cathepsin B. Some derivatives display a hyperbolic dependence of the first-order inactivation rate constant, k(obs), with the inhibitor concentration, indicative of a specific interaction process between enzyme and inhibitor. The chemical reactivity of the compounds towards cysteine as a model thiol is dependent on the naphthoquinone LUMO energy, whereas papain inactivation is not. The 1,4-naphthoquinone derivatives are inactive against the serine protease, porcine pancreatic elastase.  相似文献   

20.
We report that lysosomotropic agents and cysteine protease inhibitors inhibited protease-resistant prion protein accumulation in scrapie-infected neuroblastoma cells. The inhibition occurred without either apparent effects on normal prion protein biosynthesis or turnover or direct interactions with prion protein molecules. The findings introduce two new classes of inhibitors of the formation of protease-resistant prion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号