首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation was undertaken to clarify the mechanism of the stimulated--respiration caused by K+ or norepinephrine in brown adipose tissue. 1. The addition of 30 approximately 100 mM K+ stimulated remarkably oxygen uptake in brown adipose tissue, and similarly norepinephrine (0.1 or 1.0 mug/ml) caused a marked stimulation. 2. Even if Na+ in normal Ringer solution was replaced by Choline or Li+, oxygen uptake caused by K+ (30 mM) or norepinephrine (1.0 mug/ml) was unaffected. 3. K+ -induced oxygen uptake was not observed when a Ca2+ -deficient tissue was incubated in Ca2+ -free Ringer, while norepinephrine-induced oxygen uptake clearly observed. And the oxygen uptake of Ca2+ -deficient tissue due to K+ was recovered by the addition of 5 mM Ca2+. 4. Mn2+ (6 mM) or La3+ (10 mM) inhibited significantly oxygen uptake due to K+, but not oxygen uptake due to norepinephrine. 5. K+ -induced oxygen uptake was unaffected by 10(-4) or 10(-3)M ouabain, but norepinephrine-induced oxygen uptake was inhibited considerably by 10(-4)M ouabain. 6. The oxygen uptake due to K+ was unaffected by propranolol (33 muM), whereas that due to norepinephrine was significantly inhibited in the presence of propranolol. 7. In the tissue from reserpine-treated animal, the oxygen uptake caused by K+ was observed. According, from these positive results we are justified to suggest that K+ -induced oxygen uptake is dependent on the presence of Ca2+, and not always caused by catecholamines released secondarily from nerve terminal.  相似文献   

2.
Phenazine methosulphate (PMS) or ferricyanide caused ultrastructural damage, including sarcolemma folds and swelling of the sarcoplasmic reticulum (SR), in amphibian skeletal muscle which corresponds with that triggered by a rise in [Ca]i and which, it is suggested, is caused by the activation of NAD(P)H oxidases at the sarcolemma (where it causes sarcolemma folding) and SR (where it causes myofilament damage). PMS also caused SR swelling and more limited damage in chemically-skinned muscle at zero [Ca]. In contrast with the oxygen paradox of cardiac muscle, there is no evidence for the production of oxygen radicals since no protection was provided by N2, mannitol, desferrioxamine or alpha-tocopherol, nor was the cell damage produced by an influx of Ca across the sarcolemma.  相似文献   

3.
1. Langendorff-perfusion of rat hearts with either 10 mM caffeine or 1 mM 2,4-dinitrophenol (DNP) caused severe ultrastructural damage to the myofilaments and mitochondria that was similar to that found in a standard Ca2+-paradox.2. This damage occurred in the presence and absence of extracellular Ca2+3. Creatine kinase (CK) release (indicative of sarcolemma breakdown) was not recorded unless the caffeine- or DNP-perfusion was preceded by Ca2+0-depletion.4. It is concluded that: (i) the pathways leading to damage to the myofilaments and sarcolemma are independent; (ii) the CK release mechanism requires dual activation of Ca2+0-depletion plus a rise in [Ca2+]i; and (iii) current theories concerning the mechanisms underlying the genesis of the Ca2+-paradox are incorrect or incomplete.  相似文献   

4.
Our previous study showed that active oxygen radicals generated from a Fenton system and a xanthine plus xanthine oxidase system caused serious loss of in vivo bioactivity of recombinant human erythropoietin (EPO), a highly glycosylated protein. In the present study, we characterized the oxidative modifications to the protein and carbohydrate moiety of EPO, which lead to a reduction of its bioactivity. In vitro bioactivity was reduced when EPO was treated with oxygen radi cals generated from a Fenton system in the presence of 0.016 mM H202, and the reduction was directly proportional to the loss of in vivo bioactivity. SDS-PAGE analysis showed that dimer formation and degradation was observed under more severe conditions (Fenton reaction with 0.16 mM H202). The tryptophan destruction was detected at 0.016 mM H2O2 and well correlated with the loss of in vitro bioactivity, whereas loss of other amino acids were occurred under more severe conditions. Treatment with the Fenton system did not result in any specific damage on the carbohydrate moiety of EPO, except a reduction of sialic acid content under severe condition. These results suggest that active oxygen radicals mainly react with the protein moiety rather than the carbohydrate moiety of EPO. Destruction of tryptophan residues is the most sensitive marker of oxidative damage to EPO, suggesting the importance of tryptophan in the active EPO structure. Deglycosylation of EPO caused an increase of susceptibility to oxygen radicals compared to intact EPO. The role of oligosaccharides in EPO may be to protect the protein structure from active oxygen radicals.  相似文献   

5.
Enhanced level of UV-B radiation and heavy metals in irrigated soils due to anthropogenic activities are deteriorating the environmental conditions necessary for growth and development of plants. The present study was undertaken to study the individual and interactive effects of heavy metal nickel (NiCl(2)·6H(2)O; 0.01, 0.1, 1.0?mM) and UV-B exposure (0.4 W m(-2); 45?min corresponds to 1.08 KJ m(-2)) on growth performance and photosynthetic activity of pea (Pisum sativum L.) seedlings. Ni treatment at high doses (0.1 and 1.0?mM Ni) and UV-B alone reduced chlorophyll content and photosynthetic activity (oxygen yield, carbon fixation, photorespiration, and PSI, PSII, and whole chain electron transport activities), and declining trends continued with combined doses. In contrast to this, Ni at 0.01?mM appeared to be stimulatory for photosynthetic pigments and photosynthetic activity, thereby enhanced biomass was observed at this concentration. However, combined dose (UV-B + 0.01?mM Ni) caused inhibitory effects. Carotenoids showed different responses to each stress. Nickel at high doses strongly inhibited PSII activity and the inhibition was further intensified when chloroplasts were simultaneously exposed to UV-B radiation. PSI activity appeared to be more resistant to each stress. High doses of Ni (0.1and 1.0?mM) and UV-B alone interrupted electron flow at the oxygen evolving complex. Similar damaging effects were caused by 0.01 and 0.1?mM Ni together with UV-B, but the damage extended to PSII reaction center in case of 1.0?mM Ni in combination with UV-B. In conclusion, the results demonstrate that low dose of Ni stimulated the growth performance of pea seedlings in contrast to its inhibitory role at high doses. However, UV-B alone and together with low as well as high doses of Ni proved to be toxic for P. sativum L.  相似文献   

6.
7.
Paraquat-induced nephrotoxicity involves severe renal cell damage caused by reactive oxygen species (ROS), specifically via increasing concentrations of superoxide anions in the kidney. Recently, superoxide dismutase (SOD) mimetics (SODm) have been developed that display safe SOD activities but which also possess additional antioxidant enzyme (e.g., catalase) or ROS-scavenging activities. The aim of this study was to compare the effects of two such SODm, specifically, EUK-134, a SODm with catalase activity, and tempol, a SODm with ROS-scavenging properties, on paraquat-induced nephrotoxicity of renal NRK-52E cells. Incubation with paraquat (1 mM) for 24 h reduced cell viability and increased necrosis significantly. Paraquat also generated significant quantities of superoxide anions and hydroxyl radicals. Both EUK-134 (10-300 microM) and tempol (0.3-1.0 mM) were able to improve cell viability and reduced paraquat-induced cell death significantly via dismutation or scavenging of superoxide anions and reduced hydroxyl radical generation. The data presented here suggest that SODm such as EUK-134 and tempol, which possess additional catalase and/or ROS-scavenging activities, can significantly reduce renal cell damage caused by paraquat. These effects were evident at concentrations which avoid the pro-oxidant activities associated with higher concentrations of SOD. Such SODm could therefore prove to be beneficial as therapies for paraquat nephrotoxicity.  相似文献   

8.
5-Aminolevulinic acid (ALA), a heme precursor overproduced in various porphyric disorders, has been implicated in iron-mediated oxidative damage to biomolecules and cell structures. From previous observations of ferritin iron release by ALA, we investigated the ability of ALA to cause oxidative damage to ferritin apoprotein. Incubation of horse spleen ferritin (HoSF) with ALA caused alterations in the ferritin circular dichroism spectrum (loss of a alpha-helix content) and altered electrophoretic behavior. Incubation of human liver, spleen, and heart ferritins with ALA substantially decreased antibody recognition (51, 60, and 28% for liver, spleen, and heart, respectively). Incubation of apoferritin with 1-10mM ALA produced dose-dependent decreases in tryptophan fluorescence (11-35% after 5h), and a partial depletion of protein thiols (18% after 24h) despite substantial removal of catalytic iron. The loss of tryptophan fluorescence was inhibited 35% by 50mM mannitol, suggesting participation of hydroxyl radicals. The damage to apoferritin had no effect on ferroxidase activity, but produced a 61% decrease in iron uptake ability. The results suggest a local autocatalytic interaction among ALA, ferritin, and oxygen, catalyzed by endogenous iron and phosphate, that causes site-specific damage to the ferritin protein and impaired iron sequestration. These data together with previous findings that ALA overload causes iron mobilization in brain and liver of rats may help explain organ-specific toxicities and carcinogenicity of ALA in experimental animals and patients with porphyria.  相似文献   

9.
5-Aminolevulinic acid (ALA) is a heme precursor that accumulates in lead poisoning and inborn porphyrias. It has been shown to produce reactive oxygen species upon metal-catalyzed aerobic oxidation and to cause oxidative damage to proteins, liposomes, DNA, and subcellular structures. Studies have also shown that ALA may condense to yield the cyclic product 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY). Here we propose that DHPY could be involved in DNA damage in the presence of high concentrations of ALA. Exposure of plasmid pUC19 DNA to low concentrations of DHPY (2-10 microM) in the presence of 0.1 mM Cu2+ ions causes DNA strand breaks, as demonstrated by agarose gel electrophoresis. It was also shown that in the presence of Cu2+ ions DHPY is able to increase the oxidation of monomeric 2'-deoxyguanosine to form 8-oxo-7,8-dihydro-2'-deoxyguanosine as inferred from high performance liquid chromatography measurements using electrochemical detection. Addition of a metal chelator (bathocuproine, 0.5 mM), the DNA compacting polyamines spermidine (1 mM) and spermine (1 mM) or antioxidant enzymes such as superoxide dismutase (10 microg/ml) and catalase (20 pg/ml) protect the DNA against these damages. The data presented here are discussed with respect to the increased frequency of liver cancer in patients with acute intermittent porphyria.  相似文献   

10.
Reactive oxygen species (ROS) increase permeability in the airway epithelium. Extended periods of oxidant exposure may be experienced by those suffering from chronic inflammation of the lungs, receiving supplemental oxygen, or living in areas with high levels of air pollution. We studied the effects of long-term, continuous exposure to hydrogen peroxide (H(2)O(2)) on the trans-epithelial electrical resistance (TER) across cultured monolayers of a transformed cell line of human bronchial epithelial cells, 16HBE14o- (16HBE). A TER perfusion system was employed to continuously monitor the TER without disturbing the tissue model. The TER decreased in a dose-dependent manner with increasing concentrations of H(2)O(2) (0.1, 0.5, and 1.0 mM), regardless of pre-incubation conditions. Cell cultures pre-treated with 50 ng/ml keratinocyte growth factor (KGF) showed a significant delay in oxidant-induced TER decreases caused by 0.1 mM H(2)O(2). Exposure to 0.1 mM H(2)O(2) for 350 min led to disruption of tight junction proteins, ZO-1 and occludin, but KGF treatment prevented this damage. The recovery of epithelial barrier function after exposure to oxidants was also studied. Tissue models exposed to 0.5 mM H(2)O(2) for 25 min showed complete recovery of TER after 20 h, independent of culture pre-treatment. In contrast, KGF pre-incubation enhanced the recovery of 16HBE cultures exposed for 50 min to 0.5 mM H(2)O(2).  相似文献   

11.
Ultrasonically induced cell damage and active oxygen generation with 4-formyloximeetylidene-3-hydroxyl-2-vinyl-deuterio-porphynyl(IX)-6-7-diaspartic acid (ATX-S10) were compared in the same in vitro insonation setup. Sarcoma 180 cells suspended in air-saturated PBS were exposed to ultrasound at 2 MHz for up to 60 s in the presence and absence of ATX-S10. The viability was determined by Trypan blue exclusion test. Ultrasonically induced active oxygen generation in the presence and absence of ATX-S10 in air-saturated aqueous solutions of 50 mM 2,2,6,6-tetramethyl-4-piperidone was detected by electron spin resonance (ESR). Significant enhancement of the rates of both ultrasonically induced cell damage and nitroxide generation was demonstrated with 40-160 microM ATX-S10. Both rates correlated very well. The enhancement of both rates with ATX-S10 was suppressed by 10 mM histidine. These results suggest that ultrasonically generated active oxygen plays a primary role in the ultrasonically induced cell damage in the presence of ATX-S10.  相似文献   

12.
Exposure to either ionizing radiation or certain transition metals results in generation of reactive oxygen species that induce DNA damage, mutation, and cancer. Vitamin C (a reactive oxygen scavenger) is considered to be a dietary radioprotective agent. However, it has been reported to be genotoxic in the presence of certain transition metals, including copper. In order to explore the capacity of vitamin C to protect DNA from radiation-induced damage, and the influence of the presence of copper on this protection, we investigated vitamin C-mediated protection against radiation-induced damage to calf thymus DNA in vitro in the presence or absence of copper(II). Vitamin C (0.08-8.00 mM, pH 7.0) significantly reduced DNA damage induced by gamma-irradiation (30-150 Gy) by 30-50%, similar to the protective effect of glutathione. However, vitamin C plus copper (50 microM) significantly enhanced gamma-radiation-induced DNA damage. Low levels of added copper (5 microM), or chelation of copper with 1-N-benzyltriethylenetetraine tetrahydrochloride (BzTrien) and bathocuprinedisulfonic acid (BCSA), abolished the enhanced damage without diminishing the protective effect of vitamin C. These results indicate that vitamin C can act as: (1) an antioxidant to protect DNA damage from ionizing radiation; and (2) a reducing agent in the presence of copper to induce DNA damage. These effects are important in assessing the role of vitamin C, in the presence of mineral supplements or radioprotective therapeutic agents, particularly in patients with abnormally high tissue copper levels.  相似文献   

13.
In the present study, we have investigated if reactive oxygen species are involved in the oxygen-dependent regulation of potassium-chloride cotransport activity in trout erythrocyte membrane. An increase in the oxygen level caused an increase in chloride-sensitive potassium transport (K(+)-Cl(-) cotransport). 5 mM hydrogen peroxide caused an increase in K(+)-Cl(-) cotransport at 5% oxygen. The increase in flux could be inhibited by adding extracellular catalase in the incubation. Pretreatment of the cells with mercaptopropionyl glycine (MPG), a scavenger of reactive oxygen species showing preference for hydroxyl radicals, abolished the activation of the K(+)-Cl(-) cotransporter by increased oxygen levels. The inhibition by MPG was reversible, and MPG could not inhibit the activation of transporter by the sulfhydryl reagent, N-ethylmaleimide, indicating that the effect of MPG was due to the scavenging of reactive oxygen species and not to the reaction of MPG with the cotransporter. Copper ions, which catalyze the production of hydroxyl radicals in the Fenton reaction, activated K(+)-Cl(-) cotransport significantly at hypoxic conditions (1% O(2)). These data suggest that hydroxyl radicals, formed from O(2) in close vicinity to the cell membrane, play an important role in the oxygen-dependent activation of the K(+)-Cl(-) cotransporter.  相似文献   

14.
Substance P (SP(1-11)) was exposed to a continuous flux of superoxide (O2-) or hydroxyl radicals ((.)OH) in a hypoxanthine (HX)/xanthine oxidase (86 mU) system in the presence of 1 mM deferoxamine and 40 mM D-mannitol or 50 muM FeCI(3). 6H(2)O and 50 muM EDTA, respectively. O2- caused fragmentation between the Phe(7) and Phe(8), whereas (.)OH induced cleavage also between the Phe(8) and Gly(9). Reactive oxygen species H(2)O(2) and HCIO did not cause fragmentation, but modification of the amino acid side chains and/or aggregation with altered hydrophobicity in reverse phase high performance liquid chromatography compared to native SP(1-11). Furthermore, exposure of SP(1-11) to phorbol myristate acetate preactivated neutrophils resuited in products similar to those observed upon exposure to superoxide or hydroxyl radicals in a cell-free HX/xanthine oxidase system. This study suggests that, in contrast to rigid proteins, fragmentation is relatively easily induced in a small peptide like SP(1-11), perhaps due to strain on the peptide and t-carbon bonds caused by the movable, random coil configuration acquired by SP(1-11) in an aqueous solution. Oxidative modification might modulate paracrine actions of SP(1-11) at site of inflammation.  相似文献   

15.
Incubation of the isolated mouse diaphragm with a high rate of oxygenation (10 ml s-1, 95% O2 + 5% CO2) causes a characteristic cellular damage with widely-separated myofibrils and swollen sarcotubular system within 10 min. This damage was ameliorated by inhibitors of the hydroxyl radical (.OH), desferrioxamine, dimethyl thiourea and 120 mM mannitol, and by incubation at 8 degrees C. It was not prevented either by inhibitors of the pathway leading to sarcolemma damage (nordihydroguaiaretic acid, alpha-tocopherol, butylated hydroxytoluene) nor by agents and treatments that inhibit the oxygen paradox of cardiac muscle (glucose, omission of extracellular calcium, incubation at 30 degrees C, superoxide dismutase and catalase). Nevertheless there are similarities between these two types of damage triggered by O2 and the possibility that in both an NAD(P)H oxidase is stimulated and cytotoxic oxygen radicals are generated is discussed.  相似文献   

16.
Potassium bromate (KBrO3, PB) is a by-product of ozone used as disinfectant in drinking water. And PB is also a widely used food additive. However, there is little known about its adverse effects, in particular those related to its genotoxicity in humans. The aim of this study was to investigate the genotoxic effects of PB and the underlying mechanisms, using human hepatoma cell line, HepG2. Exposure of the cells to PB caused a significant increase of DNA migration in single cell gel electrophoresis (SCGE) assay and micronuclei (MN) frequencies in micronucleus test (MNT) at all tested concentrations (1.56–12.5 mM and 0.12–1 mM), which suggested that PB-mediated DNA strand breaks and chromosome damage. To indicate the role of antioxidant in those effects, DNA migration was monitored by pre-treatment with hydroxytyrosol (HT) as an antioxidant in SCGE assay. It was found that DNA migration with pre-treatment of HT was dramatically decreased. To elucidate the genotoxicity mechanisms, the study monitored the levels of reactive oxygen species (ROS), glutathione (GSH) and 8-hydroxydeoxyguanosine (8-OHdG). PB was shown to induce ROS production (12.5 mM), GSH depletion (1.56–12.5 mM) and 8-OHdG formation (6.25–12.5 mM) in HepG2 cells. Moreover, lysosomal membrane stability and mitochondrial membrane potential were further studied for the mechanisms of PB-induced genotoxicity. A significant increase was found in the range of 6.25–12.5 mM in lysosomal membrane stability assay. However, under these PB concentrations, we were not able to detect the changes of mitochondrial membrane potential. These results suggest that PB exerts oxidative stress and genotoxic effects in HepG2 cells, possibly through the mechanisms of lysosomal damage, an earlier event preceding the oxidative DNA damage.  相似文献   

17.
4-Aminobiphenyl (4-ABP) and its analogue, 2-aminobiphenyl (2-ABP), were examined for their ability to induce oxidative DNA damage in Hep G2 cells. Using the alkaline comet assay, we showed that 2-ABP and 4-ABP (25-200 microM) were able to induce the DNA damage in Hep G2 cells. With both compounds, formation of intracellular reactive oxygen species (ROS) was detected using flow cytometry analysis. Post-treatment of 2-ABP and 4-ABP-treated cells by endonuclease III (Endo III) or formamidopyrimidine-DNA glycosylase (Fpg) to determine the formation of oxidized pyrimidines or oxidized purines showed a significant increase of the extent of DNA migration. This indicated that oxidative DNA damage occurs in Hep G2 cells after exposure to 2-ABP and 4-ABP. This assumption was further substantiated by the fact that the spin traps, 5,5-dimethyl-pyrroline-N-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN), decreased DNA damage significantly. Furthermore, addition of the catalase (100 U/ml) caused a decrease in the DNA damage induced by 2-ABP or 4-ABP, indicating that H(2)O(2) is involved in ABP-induced DNA damage. Pre-incubation of the cells with the iron chelator desferrioxamine (DFO) (1mM) and with the copper chelator neocupronine (NC) (100 microM) also decreased DNA damage in cells treated with 200 microM 2-ABP or 200 microM 4-ABP, while the calcium chelator {1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester}(BAPTA/AM) (10 microM) decreased only DNA strand breaks in cells exposed to 4-ABP. This suggested that ions are involved in the formation of DNA strand breaks. Using RT-PCR and Western blotting, lower inhibition of the expression of the OGG1 gene and of the OGG1 protein was observed in cells treated with 4-ABP, and 2-ABP-treated cells showed a marked reduction in the expression of OGG1 gene and OGG1 protein. Taken together, our finding indicated the mechanisms of induced oxidative DNA damage in Hep G2 cell by 2-ABP and 4-ABP are different, although both tested compounds are isomers.  相似文献   

18.
2-Nitropropane (2-NP), a widely used industrial solvent, is carcinogenic to rats. To clarify the mechanism of carcinogenesis by 2-NP, we investigated DNA damage by 2-NP metabolites, N-isopropylhydroxylamine (IPHA) and hydroxylamine-O-sulfonic acid (HAS), using 32P-5'-end-labelled DNA fragments obtained from genes that are relevant to human cancer. In the presence of Fe(III) EDTA, both IPHA and HAS caused DNA damage at every nucleotide position without marked site preference. The damage was inhibited by free hydroxyl radical (-*OH) scavengers, catalase and deferoxamine mesilate, an iron chelating agent. These results suggest that the DNA damage was caused by -*OH generated via H(2)O(2) by both IPHA and HAS. In contrast, in the presence of Cu(II), IPHA frequently caused DNA damage at thymine. The Cu(II)-mediated DNA damage caused by IPHA was inhibited by catalase, methional and bathocuproine, a Cu(I)-specific chelator, suggesting the involvement of H(2)O(2) and Cu(I). These results suggest that the DNA damage induced by IPHA in the presence of Cu(II) was caused by a reactive oxygen species like the Cu(I)-hydroperoxo complex. On the other hand, HAS most frequently induced DNA damage at 5'-TG-3', 5'-GG-3' and 5'-GGG-3' sequences. Catalase and methional only partly inhibited the Cu(II)-mediated DNA damage caused by HAS, suggesting that the reactive oxygen species and another reactive species participate in this process. Formation of 8-oxodG by IPHA or HAS increased in the presence of metal ions. This study suggests that metal-mediated DNA damage caused by 2-NP metabolites plays an important role in the mutagenicity and the carcinogenicity of 2-NP.  相似文献   

19.
Treatment of Leydig cells with 1 mM 8-Br-cAMP for 48 h decreased microsomal cytochrome P-450 activities, 17 alpha-hydroxylase and C17-20 lyase, by 60-75% and resulted in desensitization of the steroidogenic response. Reduction of the oxygen tension from 19 to 1% O2 prevented the decrease in P-450 activities but not the reduction in steroidogenic capacity. The decrease in activity was also prevented by blocking steroid synthesis with aminoglutethimide. Treatment of cultures with steroid products, androstenedione or testosterone, or product analogs, epitestosterone or 17 alpha-methyltestosterone, at a concentration of 2 microM, which is equivalent to the concentration of testosterone resulting from stimulation with cAMP, also caused oxygen tension-sensitive decreases in hydroxylase activity. Treatment of cultures with 2 microM cortisol, estradiol, or methyltrienolone, an androgen receptor agonist, did not decrease hydroxylase activity, nor did treatment with an androgen receptor antagonist prevent the cAMP- or testosterone-induced decreases in hydroxylase activity. Reductions in hydroxylase and lyase activities resulting from testosterone- or epitestosterone-treatment had little or no effect on acute cAMP-stimulated testosterone production, whereas desensitization with cAMP caused an 80-90% reduction in steroidogenic capacity. 22R-Hydroxycholesterol-supported testosterone synthesis was decreased by both cAMP- and steroid-treatment at 19% O2, but not below the cAMP-stimulated level. Reduction of the oxygen tension partially prevented this decrease. These data are consistent with the hypothesis that the decline in microsomal P-450 enzymes in desensitized Leydig cells results from product (pseudosubstrate)-induced, oxygen-derived, free-radical damage rather than a steroid receptor-mediated process.  相似文献   

20.
A comparison of cell cycle phase distribution of 3T3 cells and their transformants 3T3SV40 treated with different substances changing the intracellular level of reactive oxygen species (ROS) has been made. In this study the following glutathione synthesis modulating agents were tested: two precursors of intracellular glutathione, antioxidant N-acetyl-L-cysteine (NAC) (-)-2-oxo-4-thiazolidine-carboxylic acid (OTZ), and inhibitor of glutathione synthesis, DL-buthionine-S, R-sulfoximine (BSO). It has been shown that both NAC (10-20 mM) and OTZ (20 mM) decreased the intracellular level of ROS in both cell lines. OTZ was more potent than NAC. However, only NAC caused changes in cell cycle progression of both cell types in dose-dependent manner. These changes differed in 3T3 and 3T3SV40 cells. Flow cytometric analysis of cell cycle phase distribution indicated that NAC (20 mM) blocked cell cycle in the G1 phase. The G1--arrest was completely reversible after removal of NAC from the medium. NAC (10-20 mM) caused a decrease in S and G2/M phases of transformants 3T3SV40. Moreover, a part of the population died apoptoticaly. Different mechanisms of NAC effect on normal and transformed cells are discussed. It is suggested that there is no strong correlation between cell cycle progression and intracellular level of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号