首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to test the hypothesis that the rate (dose/time) at which oestradiol-17 beta (oestradiol) is presented to the hypothalamo-pituitary axis influences secretion of LH, FSH and prolactin. A computer-controlled infusion system was used to produce linearly increasing serum concentrations of oestradiol in ovariectomized ewes over a period of 60 h. Serum samples were collected from ewes every 2 h from 8 h before to 92 h after start of infusion, and assayed for oestradiol, LH, FSH and prolactin. Rates of oestradiol increase were categorized into high (0.61-1.78 pg/h), medium (0.13-0.60 pg/h) and low (0.01-0.12 pg/h). Ewes receiving high rates of oestradiol (N = 11) responded with a surge of LH 12.7 +/- 2.0 h after oestradiol began to increase, whereas ewes receiving medium (N = 15) and low (N = 11) rates of oestradiol responded with a surge of LH at 19.4 +/- 1.7 and 30.9 +/- 2.0 h, respectively. None of the surges of LH was accompanied by a surge of FSH. Serum concentrations of FSH decreased and prolactin increased in ewes receiving high and medium rates of oestradiol, when compared to saline-infused ewes (N = 8; P less than 0.05). We conclude that rate of increase in serum concentrations of oestradiol controls the time of the surge of LH and secretion of prolactin and FSH in ovariectomized ewes. We also suggest that the mechanism by which oestradiol induces a surge of LH may be different from the mechanism by which oestradiol induces a surge of FSH.  相似文献   

2.
This study was designed to see if giving exogenous oestradiol, during the follicular phase of the oestrous cycle of intact ewes, during the breeding season or transition into anoestrus, would alter the occurrence, timing or magnitude of the preovulatory surge of secretion of luteinising hormone (LH) or follicle stimulating hormone (FSH). During the breeding season and the time of transition, separate groups of ewes were infused (intravenously) with either saline (30 ml h−1; n = 6) or oestradiol in saline (n = 6) for 30 h. Infusion started 12 h after removal of progestin-containing intravaginal sponges that had been in place for 12 days. The initial dose of oestradiol was 0.02 μg h−1; this was doubled every 4 h for 20 h, followed by every 5 h up to 30 h, to reach a maximum of 1.5 μg h−1. Following progestin removal during the breeding season, peak serum concentrations of oestradiol in control ewes were 10.31 ± 1.04 pg ml−1, at 49.60 ± 3.40 h after progestin removal. There was no obvious peak during transition, but at a time after progestin removal equivalent to the time of the oestradiol peak in ewes at mid breeding season, oestradiol concentrations were 6.70 ± 1.14 pg ml−1 in ewes in transition (P < 0.05). In oestradiol treated ewes, peak serum oestradiol concentrations (24.8 ± 2.1 pg ml−1) and time to peak (41.00 ± 0.05 h) did not differ between seasons (P > 0.05). During the breeding season, all six control ewes and four of six ewes given oestradiol showed oestrus with LH and FSH surges. The two ewes not showing oestrus did not respond to oestrus synchronisation and had persistently high serum concentrations of progesterone. During transition, three of six control ewes showed oestrus but only two had LH and FSH surges; all oestradiol treated ewes showed oestrus and gonadotrophin surges (P < 0.05). The timing and magnitude of LH and FSH surges did not vary with treatment or season. In blood samples collected every 12 min for 6 h, from 12 h after the start of oestradiol infusion, mean serum concentrations of LH and LH pulse frequency were lower in control ewes during transition than during mid breeding season (P < 0.05). Oestradiol treatment resulted in lower mean serum concentrations of LH in season and lower LH pulse frequency in transition (P < 0.05). We concluded that enhancing the height of the preovulatory peak in serum concentrations of oestradiol during the breeding season did not alter the timing or the magnitude of the preovulatory surge of LH and FSH secretion and that at transition into anoestrus, oestradiol can induce oestrus and the surge release of LH and FSH as effectively as during the breeding season.  相似文献   

3.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

4.
Gonadotrophin-releasing hormone (GnRH) readily stimulated LH output by sheep pituitary cells in vitro, and raised plasma LH concentrations in vivo in sheep, in a dose-dependent fashion. However, increases in FSH levels were only marginal by comparison. Dose-dependent decreases in sheep pituitary cell FSH output and in plasma FSH concentrations were caused by sheep follicular fluid and oestradiol-17 beta in vitro, and by bovine follicular fluid and oestradiol benzoate in vivo. In contrast, LH concentrations were only reduced slightly at the higher doses of these reagents. Cumulative suppressive effects of follicular fluid and oestradiol-17 beta (oestradiol benzoate) on FSH levels were observed both in vitro and in vivo. The transient positive feedback effect of oestradiol benzoate on FSH output negated the suppressive effect of bovine follicular fluid on plasma FSH concentrations. Progestagens, androgens and catechol oestrogens also suppressed mean FSH output in vitro, though not as effectively as oestradiol-17 beta. While only 1-5 pg/ml of oestradiol-17 beta was needed to suppress significantly mean FSH output in vitro, greater than 500 pg/ml of the other steroids was required. Seminal plasma inhibin-like peptide failed to suppress mean FSH output by cultured sheep pituitary cells at doses from 1 pg/ml to 500 ng/ml. At higher doses, both FSH and LH output was suppressed and this was accompanied by morphological deterioration of the cells. It is suggested that, to raise plasma FSH concentrations with a view to increasing ovulation rates in sheep, the development of means to reduce the negative feedback effects of steroids, notably oestradiol-17 beta, and inhibin on FSH secretion may be a more appropriate pharmacological strategy than increasing pituitary exposure to GnRH.  相似文献   

5.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

6.
Fluorogestone acetate (vaginal sponge for 4 days) and PMSG (i.m. injection at the time of sponge insertion) treatment was administered to seven 3-month-old calves to induce superovulation. Samples of peripheral plasma were taken every 4 h during treatment (4 days) and then every 2 h for 7 days. FSH, LH, oestradiol and progesterone were measured by radioimmunoassays. In all calves oestradiol concentrations increased 24 h after PMSG injection and reached the highest levels (41-502 pg/ml) during the preovulatory surge of both gonadotropins. The surge of LH and FSH occurred from 12 to 22 h after cessation of treatment. The maximum levels of LH and FSH were 11-72 ng/ml and 23-40 ng/ml respectively and occurred within 4 h of each other. Between 40 and 68 h after the LH peak the concentrations of progesterone began to increase from basal values, reaching 24.0-101.7 ng/ml when the animals were killed. A quantitative relationship was found between plasma oestradiol concentration and the numbers of ovulating follicles. Progesterone levels seemed to be related to the numbers of corpora lutea and also to the numbers of unovulated follicles. Gonadotrophin output was not quantitatively related to ovarian activity or to steroid secretion.  相似文献   

7.
Plasma concentrations of LH, FSH and oestradiol-17 beta were measured in blood samples taken at 15 min intervals for 48 h during the follicular phase of four Merino ewes. The amplitude of pulses of LH and the mean concentration of LH were higher at the beginning of the follicular phase, 36-24 h before the preovulatory surge of LH (amplitude 2.4 ng ml-1, mean concentration 3.9 ng ml-1), than at the end, 24-0 h before the preovulatory surge (amplitude 1.2 +/- 0.1 ng ml-1; mean concentration 1.4 +/- 0.1 ng ml-1). There was no change in the inter-pulse interval during this time (mean 74 +/- 5 min). Over the same period, oestradiol levels increased from 7-8 pg ml-1 to a peak of 10-15 pg ml-1. Mean FSH concentrations declined (36-24 h: 3.6 ng ml-1 vs 24-0 h: 1.8 +/- 0.3 ng ml-1) before rising at the time of the preovulatory surge of LH and again 24 h later. It was concluded that the biphasic response of LH to oestrogen that is seen in ovariectomized ewes may also operate during the follicular phase of the oestrous cycle in entire ewes.  相似文献   

8.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

9.
Intramuscular injections of oestradiol benzoate were given to 8 normally cyclic women in the early follicular phase of 3 different cycles. Progesterone was also injected in the second (low dose) and the third cycle (high dose). Oestradiol induced simultaneous surges of LH and FSH in all women and the onset of these surges was advanced by progesterone. Low-dose progesterone induced a significant increase in the amplitude and the duration of the LH and FSH surges, while high-dose progesterone decreased the duration significantly. In contrast to the oestrogen-only treatment cycles, when the women were treated with progesterone, basal LH and FSH concentrations were suppressed significantly not only before the onset but also after the end of the surge. The results suggest that progesterone affects the dimension of the oestradiol-induced gonadotrophin surge by exerting both a stimulatory and an inhibitory effect on pituitary gonadotrophin secretion. Supraphysiological concentrations of progesterone decreased the duration of the oestradiol-induced gonadotrophin surge significantly and this is possibly part of the mechanism which attenuates the endogenous LH surge in women superovulated for in-vitro fertilization.  相似文献   

10.
Six long-term ovariectomized adult marmoset monkeys were treated at 0 h with 35 micrograms oestradiol benzoate s.c. to induce an LH surge. They were also treated with detirelix (an LHRH antagonist) at 0 h, 12 h and 24 h (Exp. 1), or at 0 h and 24 h (Exp. 2) at a dose of 300 micrograms/kg s.c., or received the detirelix vehicle alone at 0 h, 12 h and 24 h (Exp. 3). All animals received the three treatments, with at least 4 weeks between experiments. Blood samples were collected at 0 h and at 6-12 h intervals for 72 h after oestradiol for the determination of plasma LH by bioassay. In control animals, oestrogen treatment resulted in a decline in plasma LH from 30.0 +/- 5.8 at 0 h to 12.8 +/- 2.6 ng/ml at 6 h (negative feedback), followed by a positive feedback surge, reaching a maximum of 148.0 +/- 34.6 ng/ml at 24 h. Values then declined to pretreatment levels by 56 h. In contrast, antagonist-treated animals showed complete abolition of the expected increase at 24 h, the low levels of the negative feedback phase being maintained for 36-72 h. These results show that hypothalamic LHRH release is essential during the oestrogen-induced LH surge, and that a direct oestrogen-induced component at the pituitary level is not expressed in the absence of LHRH in the marmoset.  相似文献   

11.
Four cows released an LH surge after 1.0 mg oestradiol benzoate administered i.m. during the post-partum anoestrous period with continuing low plasma progesterone. A similar response occurred in the early follicular phase when plasma progesterone concentration at the time of injection was less than 0.5 ng/ml. Cows treated with a progesterone-releasing intravaginal device (PRID) for 8 days were injected with cloprostenol on the 5th day to remove any endogenous source of progesterone. Oestradiol was injected on the 7th day when the plasma progesterone concentration from the PRID was between 0.7 and 1.5 ng/ml. No LH surge occurred. Similarly, oestradiol benzoate injected in the luteal phase of 3 cows (0.9-2.1 ng progesterone/ml plasma) did not provoke an LH surge. An oestradiol challenge given to 3 cows 6 days after ovariectomy induced a normal LH surge in each cow. However, when oestradiol treatment was repeated on the 7th day of PRID treatment, none released LH. It is concluded that ovaries are not necessary for progesterone to inhibit the release of LH, and cows with plasma progesterone concentrations greater than 0.5 ng/ml, whether endogenous or exogenous, did not release LH in response to oestradiol.  相似文献   

12.
Pituitary response to exogenous LHRH in superovulated women   总被引:8,自引:0,他引:8  
The response of the pituitary to exogenous LHRH was investigated in 9 normally ovulating women during the late follicular phase of a spontaneous (control) cycle, a cycle during treatment with clomiphene and a cycle during treatment with 'pure' FSH. During clomiphene treatment, basal FSH concentrations increased significantly up to Day 6 of the cycle and then decreased progressively while basal LH values showed a continuous rise. During treatment with FSH, basal LH concentrations decreased significantly. The response of both FSH and LH to LHRH showed a significant and quantitatively similar decrease during clomiphene or FSH administration as compared to the spontaneous cycles. It is suggested that basal secretion of FSH and LH is regulated by two separate mechanisms, and that an ovarian inhibitory factor(s) attenuates the response of both FSH and LH to exogenous LHRH and possibly the endogenous LH surge in superovulated cycles.  相似文献   

13.
14.
Concentrations of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in central (C) samples obtained by transfemorally catheterizing the inferior petrosal sinus of female bonnet monkeys were compared with those in peripheral (P) samples obtained simultaneously from the saphenous veins of two intact and two oophorectomized bonnet monkeys, before, during, and after luteinizing hormone releasing hormone (LHRH) stimulation. Significant differences between central and peripheral gonadotropin concentrations were detected intermittently in the resting state, and tended to be magnified by LHRH administration. In one animal in which LHRH was fortuitously administered during the course of a spontaneous LH surge, a C/P ratio for LH of 12.71, the maximum observed, was obtained. Spectral analysis exhibited periodicity for LH and, to a lesser extent, for FSH in the oophorectomized, but not in the intact, animals.  相似文献   

15.
To test the hypothesis that the synthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are differentially regulated after depletion by oestradiol, circulating concentrations of oestradiol were maintained at approximately 30 pg/ml for 16 days in each of 35 ovariectomized ewes. Five other ovariectomized ewes that did not receive oestradiol implants served as controls. After treatment with oestradiol, implants were removed and pituitary glands were collected from each of 5 ewes at 0, 2, 4, 8, 12, 16 and 32 days thereafter and amounts of mRNA for gonadotrophin subunits and contents of LH and FSH were quantified. Before collection of pituitary glands, blood samples were collected at 10-min intervals for 6 h. Treatment with oestradiol reduced (P less than 0.05) steady-state concentrations of LH beta- and FSH beta-subunit mRNAs and pituitary and serum concentrations of these hormones. At the end of treatment the amount of mRNA for FSH beta-subunit was reduced by 52% whereas that for LH beta-subunit was reduced by 93%. Steady-state concentrations of mRNA for FSH beta-subunit returned to control values within 2 days of removal of oestradiol, but 8 days were required for concentrations of FSH in the pituitary and serum to return to control values. Steady-state concentrations of mRNA for LH beta-subunit and mean serum concentrations of LH returned to control values by Day 8, but pituitary content of LH may require as long as 32 days to return to control levels. Therefore, replenishment of FSH beta-subunit mRNA preceded increases in pituitary and serum concentrations of FSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Experiments were carried out to test the hypothesis that inhibin and oestradiol act synergistically to inhibit the secretion of FSH, to test for effects of progesterone, and to compare the FSH and LH responses to ovarian feedback. In Exp. 1, with 11 ovariectomized and 12 intact Romanov ewes during the anoestrous season, doses of oestradiol (administered by means of subcutaneous implants) that restored normal LH pulse frequencies were insufficient to restore normal concentrations of FSH. In Exp. 2, with 48 ovariectomized Welsh Mountain ewes during the breeding season, a factorial design with 4 ewes per cell was used to assess the responses in LH and FSH to 3 doses of oestradiol (s.c. implants) and 4 doses of bovine follicular fluid ('inhibin', 0.2-1.6 ml s.c. every 8 h). This was done initially in the absence of progesterone and then after 7 days of treatment with progesterone (s.c. implants). Analysis of variance revealed a significant synergistic interaction between oestradiol and inhibin on the plasma concentrations of FSH. Progesterone had little effect. In contrast, there was a significant synergistic interaction between oestradiol and progesterone on the concentrations of LH. 'Inhibin' also inhibited LH secretion but this effect was independent of the two steroids. We conclude that there are basic differences in the way that ovarian feedback acts to control the secretion of LH and FSH in the ewe. FSH secretion appears to be primarily controlled by the synergistic action of oestradiol and inhibin on the anterior pituitary gland, while the secretion of LH is inhibited during the follicular phase by an effect of oestrogen at pituitary level and during the luteal phase by the synergistic action of oestradiol and progesterone at the hypothalamic level. Inhibin, or another non-steroidal factor in follicular fluid, may also play a minor role in the control of LH secretion.  相似文献   

17.
Intranasal administration of norethisterone at a daily dose of 9 micrograms between Days 5 and 14 of the menstrual cycles blocked ovulation in 10 out of 17 adult female monkeys. Serum concentrations of hormones indicated that ovulation was blocked due to a suppression of the mid-cycle, oestradiol-induced LH surge. Ovarian follicular activity in the treated menstrual cycles was not affected by norethisterone but there was a marked delay in the onset of the mid-cycle oestradiol surge in most of the treated animals. The duration of the menstrual cycle length after the oestradiol peak was significantly reduced in all the treated monkeys, indicative of a shortened luteal phase.  相似文献   

18.
In the female Bolivian squirrel monkey a much greater elevation of serum estradiol (E2) was measured after mating than that observed in similary cycling monkeys that did not mate. This raised the possibility that cycling squirrel monkeys may not ovulate during nonmated cycles To test this hypothesis, we performed laparoscopies on nine isosexually housed, cycling monkeys to observe the ovaries after the luteinizing hormone (LH) surge, which was measured by mouse interstitial cell bioassay using LER 1909-2 as the standard. Single ovulatory stigmas were identified as well demarcated, red, punctate depressions at the center of dome-shaped elevations on the ovarian surface in eight monkeys, when laparoscopically examined 9-56 hr after the LH peak. One monkey examined laparoscopically prior to the LH surge had a large translucent cystic follicle, confirming the morphology of the mature prevulatory follicle. Mean progesterone (P) concentrations fell to a nadir 1 day prior to the LH surge and then began to rise on the LH surge. Peak P levels were found 2 days after the LH surge. In the ovulating animals in which periovulatory E2 levels were measured, no value was greater than 800 pg/ml, indicating that the presence of follicular rupture was not sufficient to account for the elevated E2 levels observed after mating. These data confirm ovulation and follicular rupture in the absence of mating and delineate the relationship between periovulatory LH, P, and E2 secretory patterns in cycling squirrel monkeys.  相似文献   

19.
Using long-term ovariectomized rhesus monkeys, we examined the ability of oestradiol to decrease circulating FSH concentrations in the absence of other ovarian factors. Daily blood samples were obtained from untreated monkeys for 8 days, followed by insertion of oestradiol capsules after the Day-8 sample was taken. Samples were then taken on Days 9-15, the capsules were removed after the Day-15 sample, and samples were obtained on Days 16-19. Serum was assayed for concentration of oestradiol, FSH and LH by RIA. The concentration of FSH (ng/ml) in serum did not change during the first 8 days before oestradiol treatment (overall mean = 356 +/- 55) but decreased from the Day-8 value of 320 +/- 8 to 190 +/- 42 on Day 9 and by Day 15, after 7 days of oestradiol treatment, had reached a nadir of 20 +/- 5. By Day 17, i.e. 2 days after removal of the oestradiol capsules, serum FSH had increased (P less than 0.05) to 92 +/- 23 with a further increase (P less than 0.05) on Day 19 (171 +/- 16). This study demonstrates that, unlike in rats, mice, and sheep, administration of oestradiol alone to ovariectomized rhesus monkeys reduces immunoreactive serum FSH to concentrations measured in intact animals.  相似文献   

20.
Concentrations of oestradiol-17 beta, progesterone, and luteinizing hormone (LH) were measured in plasma collected at 6- to 12-h intervals from tammars around the time of parturition and post-partum oestrus. Parturition occurred on Day 26 or 27 after reactivation of lactation-delayed pregnancy and coincided with a precipitous decline in progesterone levels. A sharp rise in oestradiol, from basal concentrations of less than 10 pg/ml to a peak of 13 to 32 pg/ml, as well as oestrus, followed the drop in progesterone by 8.3 and 9.8 h, respectively. The LH surge was dependent on the oestradiol rise and followed it by 7 h. Ovulation followed mating by about 30 h and the LH surge by 24 h. Removal of the ovary with the large Graafian follicle prevented the oestradiol rise, oestrus and the LH surge, but not parturition. Peripartum changes in peripheral oestradiol do not appear to be involved in initiation of parturition but the oestradiol rise and associated change in the oestradiol:progesterone ratio are important signals for post-partum oestrus and the LH surge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号