首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Oxidative stress and mitochondrial dysfunction have been implicated in the pathology of HD; however, the precise mechanisms by which mutant huntingtin modulates levels of oxidative damage in turn resulting in mitochondrial dysfunction are not known. We hypothesize that mutant huntingtin increases oxidative mtDNA damage leading to mitochondrial dysfunction. We measured nuclear and mitochondrial DNA lesions and mitochondrial bioenergetics in the STHdhQ7 and STHdhQ111 in vitro striatal model of HD. Striatal cells expressing mutant huntingtin show higher basal levels of mitochondrial-generated ROS and mtDNA lesions and a lower spare respiratory capacity. Silencing of APE1, the major mammalian apurinic/apyrimidinic (AP) endonuclease that participates in the base excision repair (BER) pathway, caused further reductions of spare respiratory capacity in the mutant huntingtin-expressing cells. Localization experiments show that APE1 increases in the mitochondria of wild-type Q7 cells but not in the mutant huntingtin Q111 cells after treatment with hydrogen peroxide. Moreover, these results are recapitulated in human HD striata and HD skin fibroblasts that show significant mtDNA damage (increased lesion frequency and mtDNA depletion) and significant decreases in spare respiratory capacity, respectively. These data suggest that mtDNA is a major target of mutant huntingtin-associated oxidative stress and may contribute to subsequent mitochondrial dysfunction and that APE1 (and, by extension, BER) is an important target in the maintenance of mitochondrial function in HD.  相似文献   

2.
Nakada K  Ono T  Hayashi J 《Mitochondrion》2002,2(1-2):59-70
Recently, we generated mtDNA-based disease mice (mito mice) by introduction of respiration-deficient mitochondria possessing pathogenic mutant mtDNA with a 4696 bp deletion (deltamtDNA4696) from somatic cells into mouse zygotes. Mito mice and cytochrome c oxidase (COX) electronmicrographs, that could identify the respiration enzyme activity at individual mitochondrial levels, enabled precise investigation of the pathogenesis of deltamtDNA4696. All the observations represented unambiguous evidence for the presence of extensive and continuous exchange of genetic contents between mitochondria. Thus, the inter-mitochondrial interaction could correspond to a very unique and effective defense system of the highly oxidative organelles for preventing mice and human subjects from expressing mitochondrial dysfunction caused by mtDNA lesions, which have been continuously created by oxidative stresses during aging. Here, we would like to propose a new hypothesis on mitochondrial biogenesis, 'the interaction theory of mammalian mitochondria': mitochondria exchange genetic contents, and thus lose individuality and function as a single dynamic cellular unit.  相似文献   

3.
G Barja  A Herrero 《FASEB journal》2000,14(2):312-318
DNA damage is considered of paramount importance in aging. Among causes of this damage, free radical attack, particularly from mitochondrial origin, is receiving special attention. If oxidative damage to DNA is involved in aging, long-lived animals (which age slowly) should show lower levels of markers of this kind of damage than short-lived ones. However, this possibility has not heretofore been investigated. In this study, steady-state levels of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG) referred to deoxyguanosine (dG) were measured by high performance liquid chromatography (HPLC) in the mitochondrial (mtDNA) and nuclear (nDNA) DNA from the heart of eight and the brain of six mammalian species ranging in maximum life span (MLSP) from 3.5 to 46 years. Exactly the same digestion of DNA to deoxynucleosides and HPLC protocols was used for mtDNA and nDNA. Significantly higher (three- to ninefold) 8-oxodG/dG values were found in mtDNA than in nDNA in all the species studied in both tissues. 8-oxodG/dG in nDNA did not correlate with MLSP across species either in the heart (r=-0.68; P<0.06) or brain (r = 0.53; P<0.27). However, 8-oxodG/dG in mtDNA was inversely correlated with MLSP both in heart (r=-0.92; P<0.001) and brain (r=-0.88; P<0.016) tissues following the power function y = a(.)x(b), where y is 8-oxodG/dG and x is the MLSP. This agrees with the consistent observation that mitochondrial free radical generation is also lower in long-lived than in short-lived species. The results obtained agree with the notion that oxygen radicals of mitochondrial origin oxidatively damage mtDNA in a way related to the aging rate of each species.-Barja, G., Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.  相似文献   

4.
8-oxo-deoxyguanosine (8-oxodG) is one of the major DNA lesions formed upon oxidative attack of DNA. It is a mutagenic adduct that has been associated with pathological states such as cancer and aging. Base excision repair (BER) is the main pathway for the repair of 8-oxodG. There is a great deal of interest in the question about age-associated accumulation of this DNA lesion and its intracellular distribution, particularly with respect to mitochondrial or nuclear localization. We have previously shown that 8-oxodG-incision activity increases with age in rat mitochondria obtained from both liver and heart. In this study, we have investigated the age-associated changes in DNA repair activities in both mitochondrial and nuclear extracts obtained from mouse liver. We observed that 8-oxodG incision activity of mitochondrial extracts increases significantly with age, from 13.4 + or - 2.2 fmoles of oligomer/100 microg of protein/16 h at 6 to 18.6 + or - 4.9 at 14 and 23.7 + or - 3.8 at 23 months of age. In contrast, the nuclear 8-oxodG incision activity showed no significant change with age, and in fact slightly decreased from 11.8 + or - 3 fmoles/50 microg of protein/2 h at 6 months to 9.7 + or - 0.8 at 14 months. Uracil DNA glycosylase and endonuclease G activities did not change with age in nucleus or mitochondria. Our results show that the repair of 8-oxodG is regulated differently in nucleus and mitochondria during the aging process. The specific increase in 8-oxodG-incision activity in mitochondria, rather than a general up-regulation of DNA metabolizing enzymes in those organelles, suggests that this pathway may be up regulated during aging in mice.  相似文献   

5.
Damage to mitochondria as a result of the intrinsic generation of free radicals is theoretically involved in the processes of cellular aging. Herein, we investigated whether acutely administered melatonin, due to its free radical scavenging activity, would influence mitochondrial metabolism. Mitochondrial respiratory activity and respiratory chain complex I and IV activities in liver mitochondria from a strain of senescence-accelerated-prone mice (SAMP8) and a strain of senescence-accelerated-resistant mice (SAMR1) were measured when the animals were 12 months of age. Respiratory control index (RCI), ADP/O ratio, State 3 respiration and dinitrophenol (DNP)-dependent uncoupled respiration were significantly lower in SAMP8 than in SAMR1. In contrast, State 4 respiration was significantly higher in SAMP8 than in SAMR1. Activities of complexes I and IV in SAMP8 were significantly lower than in SAMR1. Melatonin administration (10mg/kg body weight, intraperitoneally) 1h prior to sacrifice significantly increased RCI, ADP/O ratio, State 3 respiration and DNP-induced uncoupled respiration in SAMP8 while also significantly reducing State 4 respiration in SAMP8. The injection of melatonin also significantly increased complex I activity in both mouse strains and complex IV activity in the liver of SAMP8 mice. These results document an age-related decrease in hepatic mitochondrial function in SAM which can be modified by an acute pharmacological injection of melatonin; the indole stimulated mitochondrial respiratory chain activity which would likely reduce deteriorative oxidative changes in mitochondria that normally occur in advanced age.  相似文献   

6.
A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse (“PolG” mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.  相似文献   

7.
8-Oxoguanine DNA glycosylase (Ogg1) repairs 8-oxo-7,8-dihydroxyguanine (8-oxoG), one of the most abundant DNA adducts caused by oxidative stress. In the mitochondria, Ogg1 is thought to prevent activation of the intrinsic apoptotic pathway in response to oxidative stress by augmenting DNA repair. However, the predominance of the β-Ogg1 isoform, which lacks 8-oxoG DNA glycosylase activity, suggests that mitochondrial Ogg1 functions in a role independent of DNA repair. We report here that overexpression of mitochondria-targeted human α-hOgg1 (mt-hOgg1) in human lung adenocarcinoma cells with some alveolar epithelial cell characteristics (A549 cells) prevents oxidant-induced mitochondrial dysfunction and apoptosis by preserving mitochondrial aconitase. Importantly, mitochondrial α-hOgg1 mutants lacking 8-oxoG DNA repair activity were as effective as wild-type mt-hOgg1 in preventing oxidant-induced caspase-9 activation, reductions in mitochondrial aconitase, and apoptosis, suggesting that the protective effects of mt-hOgg1 occur independent of DNA repair. Notably, wild-type and mutant mt-hOgg1 coprecipitate with mitochondrial aconitase. Furthermore, overexpression of mitochondrial aconitase abolishes oxidant-induced apoptosis whereas hOgg1 silencing using shRNA reduces mitochondrial aconitase and augments apoptosis. These findings suggest a novel mechanism that mt-hOgg1 acts as a mitochondrial aconitase chaperone protein to prevent oxidant-mediated mitochondrial dysfunction and apoptosis that might be important in the molecular events underlying oxidant-induced toxicity.  相似文献   

8.
FAT/CD36 (fatty acid translocase/Cluster of Differentiation 36), a plasma membrane fatty-acid transport protein, has been found on mitochondrial membranes; however, it remains unclear where FAT/CD36 resides on this organelle or its functional role within mitochondria. In the present study, we demonstrate, using several different approaches, that in skeletal muscle FAT/CD36 resides on the OMM (outer mitochondrial membrane). To determine the functional role of mitochondrial FAT/CD36 in this tissue, we determined oxygen consumption rates in permeabilized muscle fibres in WT (wild-type) and FAT/CD36-KO (knockout) mice using a variety of substrates. Despite comparable muscle mitochondrial content, as assessed by unaltered mtDNA (mitochondrial DNA), citrate synthase, β-hydroxyacyl-CoA dehydrogenase, cytochrome c oxidase complex IV and respiratory capacities [maximal OXPHOS (oxidative phosphorylation) respiration] in WT and KO mice, palmitate-supported respiration was 34% lower in KO animals. In contrast, palmitoyl-CoA-supported respiration was unchanged. These results indicate that FAT/CD36 is key for palmitate-supported respiration. Therefore we propose a working model of mitochondrial fatty-acid transport, in which FAT/CD36 is positioned on the OMM, upstream of long-chain acyl-CoA synthetase, thereby contributing to the regulation of mitochondrial fatty-acid transport. We further support this model by providing evidence that FAT/CD36 is not located in mitochondrial contact sites, and therefore does not directly interact with carnitine palmitoyltransferase-I as original proposed.  相似文献   

9.
Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging   总被引:4,自引:0,他引:4  
A wide spectrum of alterations in mitochondria and mitochondrial DNA (mtDNA) with aging has been observed in animals and humans. These include (i) decline in mitochondrial respiratory function; (ii) increase in mitochondrial production of reactive oxygen species (ROS) and the extent of oxidative damage to DNA, proteins, and lipids; (iii) accumulation of point mutations and large-scale deletions of mtDNA; and (iv) enhanced apoptosis. Recent studies have provided abundant evidence to substantiate the importance of mitochondrial production of ROS in aging. On the other hand, somatic mtDNA mutations can cause premature aging without increasing ROS production. In this review, we focus on the roles that ROS play in the aging-associated decline of mitochondrial respiratory function, accumulation of mtDNA mutations, apoptosis, and alteration of gene expression profiles. Taking these findings together, we suggest that mitochondrial dysfunction, enhanced oxidative stress, subsequent accumulation of mtDNA mutations, altered expression of a few clusters of genes, and apoptosis are important contributors to human aging.  相似文献   

10.
Mitochondrial DNA (mtDNA) is located close to the respiratory chain, a major source of reactive oxygen species (ROS). This proximity makes mtDNA more vulnerable than nuclear DNA to damage by ROS. Therefore, the efficient repair of oxidative lesions in mtDNA is essential for maintaining the stability of the mitochondrial genome. A series of genetic and biochemical studies has indicated that eukaryotic cells, including the model organism Saccharomyces cerevisiae, use several alternative strategies to prevent mutagenesis induced by endogenous oxidative damage to nuclear DNA. However, apart from base excision repair (BER), no other pathways involved in the repair of oxidative damage in mtDNA have been identified. In this study, we have examined mitochondrial mutagenesis in S. cerevisiae cells which lack the activity of the Ogg1 glycosylase, an enzyme playing a crucial role in the removal of 8-oxoG, the most abundant oxidative lesion of DNA. We show that the overall frequency of the mitochondrial oligomycin-resistant (Olir) mutants is increased in the ogg1 strain by about one order of magnitude compared to that of the wild-type strain. Noteworthy, in the mitochondrial oli1 gene, G:C to T:A transversions are generated approximately 50-fold more frequently in the ogg1 mutant relative to the wild-type strain. We also demonstrate that the increased frequency of Olir mutants in the ogg1 strain is markedly reduced by the presence of plasmids encoding Msh1p, a homologue of the bacterial mismatch protein MutS, which specifically functions in mitochondria. This suppression of the mitochondrial mutator phenotype of the ogg1 strain seems to be specific, since overexpression of the mutant allele msh1-R813W failed to exert this effect. Finally, we also show that the increased frequency of Olir mutants arising in an msh1/MSH1 heterozygote grown in glucose-containing medium is further enhanced if the cells are cultivated in glycerol-containing medium, i.e. under conditions when the respiratory chain is fully active. Taken together, these results strongly suggest that MSH1-dependent repair represents a significant back-up to mtBER in the repair of oxidative damage in mtDNA.  相似文献   

11.
In cultured pulmonary artery endothelial cells and other cell types, overexpression of mt-targeted DNA repair enzymes protects against oxidant-induced mitochondrial DNA (mtDNA) damage and cell death. Whether mtDNA integrity governs functional properties of the endothelium in the intact pulmonary circulation is unknown. Accordingly, the present study used isolated, buffer-perfused rat lungs to determine whether fusion proteins targeting 8-oxoguanine DNA glycosylase 1 (Ogg1) or endonuclease III (Endo III) to mitochondria attenuated mtDNA damage and vascular barrier dysfunction evoked by glucose oxidase (GOX)-generated hydrogen peroxide. We found that both Endo III and Ogg1 fusion proteins accumulated in lung cell mitochondria within 30 min of addition to the perfusion medium. Both constructs prevented GOX-induced increases in the vascular filtration coefficient. Although GOX-induced nuclear DNA damage could not be detected, quantitative Southern blot analysis revealed substantial GOX-induced oxidative mtDNA damage that was prevented by pretreatment with both fusion proteins. The Ogg1 construct also reversed preexisting GOX-induced vascular barrier dysfunction and oxidative mtDNA damage. Collectively, these findings support the ideas that mtDNA is a sentinel molecule governing lung vascular barrier responses to oxidant stress in the intact lung and that the mtDNA repair pathway could be a target for pharmacological intervention in oxidant lung injury.  相似文献   

12.
The effect of long-term caloric restriction and aging on the rates of mitochondrial H2O2 production and oxygen consumption as well as on oxidative damage to nuclear (nDNA) and mitochondrial DNA (mtDNA) was studied in rat liver tissue. Long-term caloric restriction significantly decreased H2O2 production of rat liver mitochondria (47% reduction) and significantly reduced oxidative damage to mtDNA (46% reduction) with no changes in nDNA. The decrease in ROS production was located at complex I because it only took place with complex I-linked substrates (pyruvate/malate) but not with complex II-linked substrates (succinate). The mechanism responsible for that decrease in ROS production was not a decrease in mitochondrial oxygen consumption because it did not change after long-term restriction. Instead, the caloric restricted mitochondria released less ROS per unit electron flow, due to a decrease in the reduction degree of the complex I generator. On the other hand, increased ROS production with aging in state 3 was observed in succinate-supplemented mitochondria because old control animals were unable to suppress H2O2 production during the energy transition from state 4 to state 3. The levels of 8-oxodG in mtDNA increased with age in old animals and this increase was abolished by caloric restriction. These results support the idea that caloric restriction reduces the aging rate at least in part by decreasing the rate of mitochondrial ROS production and so, the rate of oxidative attack to biological macromolecules like mtDNA.  相似文献   

13.
Respiratory function of mitochondria is compromised in aging human tissues and severely impaired in the patients with mitochondrial disease. A wide spectrum of mitochondrial DNA (mtDNA) mutations has been established to associate with mitochondrial diseases. Some of these mtDNA mutations also occur in various human tissues in an age-dependent manner. These mtDNA mutations cause defects in the respiratory chain due to impairment of the gene expression and structure of respiratory chain polypeptides that are encoded by the mitochondrial genome. Since defective mitochondria generate more reactive oxygen species (ROS) such as O2- and H2O2 via electron leak, we hypothesized that oxidative stress is a contributory factor for aging and mitochondrial disease. This hypothesis has been supported by the findings that oxidative stress and oxidative damage in tissues and culture cells are increased in elderly subjects and patients with mitochondrial diseases. Another line of supporting evidence is our recent finding that the enzyme activities of Cu,Zn-SOD, catalase and glutathione peroxidase (GPx) decrease with age in skin fibroblasts. By contrast, Mn-SOD activity increases up to 65 years of age and then slightly declines thereafter. On the other hand, we observed that the RNA, protein and activity levels of Mn-SOD are increased two- to three-fold in skin fibroblasts of the patients with CPEO syndrome but are dramatically decreased in patients with MELAS or MERRF syndrome. However, the other antioxidant enzymes did not change in the same manner. The imbalance in the expression of these antioxidant enzymes indicates that the production of ROS is in excess of their removal, which in turn may elicit an elevation of oxidative stress in the fibroblasts. Indeed, it was found that intracellular levels of H2O2 and oxidative damage to DNA and lipids in skin fibroblasts from elderly subjects or patients with mitochondrial diseases are significantly increased as compared to those of age-matched controls. Furthermore, Mn-SOD or GPx-1 gene knockout mice were found to display neurological disorders and enhanced oxidative damage similar to those observed in the patients with mitochondrial disease. These observations are reviewed in this article to support that oxidative stress elicited by defective respiratory function and impaired antioxidant enzyme system plays a key role in the pathophysiology of mitochondrial disease and human aging.  相似文献   

14.
Aging is the largest risk factor for cardiovascular disease, yet the molecular mechanisms underlying vascular aging remain unclear. Mitochondrial DNA (mtDNA) damage is linked to aging, but whether mtDNA damage or mitochondrial dysfunction is present and directly promotes vascular aging is unknown. Furthermore, mechanistic studies in mice are severely hampered by long study times and lack of sensitive, repeatable and reproducible parameters of arterial aging at standardized early time points. We examined the time course of multiple invasive and noninvasive arterial physiological parameters and structural changes of arterial aging in mice, how aging affects vessel mitochondrial function, and the effects of gain or loss of mitochondrial function on vascular aging. Vascular aging was first detected by 44 weeks (wk) of age, with reduced carotid compliance and distensibility, increased β‐stiffness index and increased aortic pulse wave velocity (PWV). Aortic collagen content and elastin breaks also increased at 44 wk. Arterial mtDNA copy number (mtCN) and the mtCN‐regulatory proteins TFAM, PGC1α and Twinkle were reduced by 44 wk, associated with reduced mitochondrial respiration. Overexpression of the mitochondrial helicase Twinkle (Tw+) increased mtCN and improved mitochondrial respiration in arteries, and delayed physiological and structural aging in all parameters studied. Conversely, mice with defective mitochondrial polymerase‐gamma (PolG) and reduced mtDNA integrity demonstrated accelerated vascular aging. Our study identifies multiple early and reproducible parameters for assessing vascular aging in mice. Arterial mitochondrial respiration reduces markedly with age, and reduced mtDNA integrity and mitochondrial function directly promote vascular aging.  相似文献   

15.
DNA repair may prevent increased levels of oxidatively damaged DNA from prolonged oxidative stress induced by, e.g. exposure to diesel exhaust particles (DEP). We studied oxidative damage to DNA in broncho-alveolar lavage cells, lungs, and liver after 4 × 1.5 h inhalations of DEP (20 mg/m3) in Ogg1? / ? and wild type (WT) mice with similar extent of inflammation. DEP exposure increased lung levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in Ogg1? / ? mice, whereas no effect on 8-oxodG or oxidized purines in terms of formamidopyrimidine DNA glycosylase (FPG) sites was observed in WT mice. In both unexposed and exposed Ogg1? / ? mice the level of FPG sites in the lungs was 3-fold higher than in WT mice. The high basal level of FPG sites in Ogg1? / ? mice probably saturated the assay and prevented detection of DEP-generated damage. In conclusion, Ogg1? / ? mice have elevated pulmonary levels of FPG sites and accumulate genomic 8-oxodG after repeated inhalations of DEP.  相似文献   

16.
Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H(2)O(2)) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60min treatment with H(2)O(2) causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60min treatment with 2mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction.  相似文献   

17.
An early event that occurs in response to alcohol consumption is mitochondrial dysfunction, which is evident in changes to the mitochondrial proteome, respiration defects, and mitochondrial DNA (mtDNA) damage. S-adenosylmethionine (SAM) has emerged as a potential therapeutic for treating alcoholic liver disease through mechanisms that appear to involve decreases in oxidative stress and proinflammatory cytokine production as well as the alleviation of steatosis. Because mitochondria are a source of reactive oxygen/nitrogen species and a target for oxidative damage, we tested the hypothesis that SAM treatment during alcohol exposure preserves organelle function. Mitochondria were isolated from livers of rats fed control and ethanol diets with and without SAM for 5 wk. Alcohol feeding caused a significant decrease in state 3 respiration and the respiratory control ratio, whereas SAM administration prevented these alcohol-mediated defects and preserved hepatic SAM levels. SAM treatment prevented alcohol-associated increases in mitochondrial superoxide production, mtDNA damage, and inducible nitric oxide synthase induction, without a significant lessening of steatosis. Accompanying these indexes of oxidant damage, SAM prevented alcohol-mediated losses in cytochrome c oxidase subunits as shown using blue native PAGE proteomics and immunoblot analysis, which resulted in partial preservation of complex IV activity. SAM treatment attenuated the upregulation of the mitochondrial stress chaperone prohibitin. Although SAM supplementation did not alleviate steatosis by itself, SAM prevented several key alcohol-mediated defects to the mitochondria genome and proteome that contribute to the bioenergetic defect in the liver after alcohol consumption. These findings reveal new molecular targets through which SAM may work to alleviate one critical component of alcohol-induced liver injury: mitochondria dysfunction.  相似文献   

18.
In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria‐targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro‐apoptotic and pro‐inflammatory redox signaling pathways.  相似文献   

19.
This work demonstrates how increased activity of copper-zinc superoxide dismutase (SOD1) paradoxically boosts production of toxic reactive oxygen species (ROS) in the intermembrane space (IMS) of mitochondria. Even though SOD1 is a cytosolic enzyme, a fraction of it is found in the IMS, where it is thought to provide protection against oxidative damage. We found that SOD1 controls cytochrome c-catalyzed peroxidation in vitro when superoxide is available. The presence of SOD1 significantly increased the rate of ROS production in mitoplasts, which are devoid of outer membrane and IMS. In response to inhibition of respiration with antimycin A, isolated mouse wild-type mitochondria increased ROS production, but the mitochondria from mice lacking SOD1 (SOD1(-/-)) did not. Also, lymphocytes isolated from SOD1(-/-) mice produced significantly less ROS than did wild-type cells and were more resistant to apoptosis induced by inhibition of respiration. Moreover, an increased amount of the toxic mutant G93A SOD1 in the IMS increased ROS production. The mitochondrial dysfunction and cell damage paradoxically induced by SOD1-mediated ROS production may be implicated in chronic degenerative diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号