首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Two series of alternating ODNs containing 5-n.alkyl-, alkenyl- and alkynyl-dU and -dC units have been prepared in order to study the kinetics of their hydrolysis by SV PDE and human serum, respectively. Both in (r5dUpdA)10 and (r5dCpdG)6 series the rate of hydrolysis decreased with increasing length of side-chain. Replacement of thymidines by 5-hexynyl-dU in different antisense oligomers resulted in considerably higher biological activity relative to that of the thymidine-containing counterparts.  相似文献   

9.
B12-dependent synthesis of deoxyribonucleotides   总被引:6,自引:0,他引:6  
  相似文献   

10.
11.
12.
13.
Deficiency of either one of the subsequent purine catabolic enzymes adenosine deaminase or purine nucleoside phosphorylase results in immunodeficiency disease in humans. However, the mechanism by which impairment of purine metabolism may cause immunodeficiency is unclear. In the present work we have studied the catabolism of purine ribonucleotides and deoxyribonucleotides in T lymphocytes to better understand the role of purine nucleoside phosphorylase and adenosine deaminase in the immune function. It was found that purine deoxyribonucleotides are degraded via catabolic pathways distinctly different from those used for purine ribonucleotide degradation. Thus both adenine and guanine ribonucleotides are deaminated to IMP whereas purine deoxyribonucleotides are exclusively dephosphorylated to the corresponding deoxyribonucleosides. These findings may explain the relatively higher degradation rates of purine deoxyribonucleotides in mammalian cells as compared to purine ribonucleotides. The catabolism of purine nucleotides is tightly linked to the active purine nucleoside cycles which consist of the phosphorolysis of purine nucleosides and deoxyribonucleosides to their corresponding bases, their salvage to monophosphates and back to the corresponding ribonucleosides. The above observations also imply that a possible role of the purine nucleoside cycles is to convert purine deoxyribonucleotides into their corresponding ribonucleotide derivatives. Deficiencies of purine nucleoside phosphorylase or of adenosine deaminase activities, enzymes which participate or lead to the purine nucleoside cycles, thus result in a selective impaired deoxyribonucleotide catabolism and immunodeficiency.  相似文献   

14.
This paper describes the development of a new class of N-linked imidazoles as potential pH-sensitive, cleavable linkers for use in cancer drug delivery systems. Kinetic analysis of eight derivatives of N-ethoxybenzylimidazoles (NEBIs) showed that their rates of hydrolysis are accelerated in mild aqueous acidic solutions compared to in solutions at normal, physiological pH. Incorporation of electron donating or electron withdrawing substituents on the phenyl ring of the NEBI resulted in the ability to tune the rates of hydrolysis under mild acidic conditions with half-lives ranging from minutes to months. A derivative of NEBI carrying doxorubicin, a widely used anticancer agent, also showed an increased rate of hydrolysis under mild acid compared to that at normal physiological pH. The doxorubicin analogue resulting from hydrolysis from the NEBI exhibited good cytotoxic activity when exposed to human ovarian cancer cells. These results demonstrate a potentially useful, general strategy for conjugating a wide range of drugs to imidazole-containing delivery vessels via NEBI functionalities for controlled release of therapeutics for drug delivery applications.  相似文献   

15.
16.
Hammerhead ribozymes are considered to be potential therapeutic agents for HIV virus because of their site-specific RNA cleavage activities. In order to elucidate structure--function relationship and also to hopefully endow ribozymes with resistance to ribonucleases, we firstly synthesized chimeric DNA/RNA ribozymes in which deoxyribonucleotides were substituted for ribonucleotides at noncatalytic residues (stems I, II, and III). Kinetic analysis revealed that (i) DNA in the hybridizing arms (stems I and III) enhanced the chemical cleavage step. (ii) stem II and its loop do not affect its enzymatic activity. Secondly, we introduced deoxyribonucleotides with phosphorothioate linkages to the same regions (stems I, II, and III) in order to test whether such thio-linkages further improve their resistance to nucleases. Kinetic measurements revealed that this chimeric thio-DNA/RNA ribozyme had seven-fold higher cleavage activity (kcat = 27 min-1) than that of the all-RNA ribozyme. In terms of stability in serum, DNA-armed ribozymes gained about 10-fold higher stability in human serum but no increase in stability was recognized in bovine serum, probably because the latter serum mainly contained endoribonucleases that attacked unmodified catalytic-loop regions of these ribozymes. Thirdly, in order to protect them from endoribonucleases, three additional modifications were made at positions U7, U4 and C3 within the internal catalytic-loop region, that succeeded in gaining more than a hundred times greater resistance to nucleases in both serums. More importantly, these catalytic-loop modified ribozymes had the comparable cleavage activity (kcat) to the wild-type ribozyme. Since these chimeric thio-DNA/RNA ribozymes are more resistant to attack by both exonucleases and endoribonucleases than the wild-type all-RNA ribozymes in vivo and since their cleavage activities are not sacrificed, they appear to be better candidates than the wild type for antiviral therapeutic agents.  相似文献   

17.
18.
Firshein, William (Wesleyan University, Middletown, Conn.), Robert J. Erickson, and Bernadette A. Gargan. Differential effects of deoxyribonucleotides on respiration of virulent pneumococci. J. Bacteriol. 92:1645-1654. 1966.-Four naturally occurring deoxyribonucleotides affect respiration in three virulent pneumococcal types (Diplococcus pneumoniae) differentially. Deoxyadenylic acid (dAMP) stimulates respiration in type I and slightly stimulates respiration in type III, but has no effect in type II. Deoxyguanylic acid (dGMP) stimulates respiration in type I, inhibits respiration in type II, and has no effect in type III. Thymidylic acid (dTMP) inhibits respiration of type I, but is stimulatory in types II and III. Deoxycytidylic acid (dCMP) inhibits respiration of all three pneumococcal types. Of a large number of related compounds, including many of the naturally occurring deoxynucleosides, nucleosides, nucleotides, purines, and pyrimidines, thymidine is slightly effective in types II and III, and deoxycytidine is slightly inhibitory in all three types. None of the remaining compounds affects respiration significantly. With a few exceptions, there is a correlation between the extent of uptake of each deoxynucleotide in the three types and their ability to stimulate (or inhibit) respiration. The greater the uptake, the greater the enhancement of respiration. The less uptake, the greater the inhibition of respiration. In cell-free extracts of type I, dAMP also stimulates the oxidative decarboxylation of pyruvic acid. During this reaction, dAMP is phosphorylated to deoxyadenosine diphosphate (dADP) and to deoxyadenosine triphosphate (dATP).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号