首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rice is the staple food for more than fifty percent of the world's population, and is therefore an important crop. However, its production is hindered by several biotic and abiotic stresses. Although rice is the only crop that can germinate even in the complete absence of oxygen (i.e. anoxia), flooding (low oxygen) is one of the major causes of reduced rice production. Rice germination under anoxia is characterized by the elongation of the coleoptile, but leaf growth is hampered. In this work, a comparative proteomic approach was used to detect and identify differentially expressed proteins in the anoxic rice coleoptile compared to the aerobic coleoptile. Thirty-one spots were successfully identified by MALDI-TOF MS analysis. The majority of the identified proteins were related to stress responses and redox metabolism. The expression levels of twenty-three proteins and their respective mRNAs were analyzed in a time course experiment.  相似文献   

2.
3.
Rice ( Oryza sativa L.) seeds can germinate under anoxia and can show coleoptile elongation. The anoxic coleoptile is usually longer than aerobic coleoptiles. Although several hypotheses have been proposed to explain the ability of rice to elongate coleoptiles under anoxia, conclusive experimental evidence explaining this physiological trait is lacking. In order to investigate whether metabolic and molecular markers correlate with anoxic coleoptile length, we screened 141 Italian and 23 Sri Lankan rice cultivars for their ability to elongate coleoptiles under anoxia. Differences in anoxic coleoptile length were used to evaluate whether a correlation exists between coleoptile length and biochemical and molecular parameters. The expression of genes coding for glycolytic and fermentative enzymes showed a very low correlation with anoxic coleoptile length. Although differences were found in carbohydrate content between the varieties tested, this parameter also does not appear to be critical in terms of coleoptile elongation. Efficient ethanol fermentation does, however, correlate well with the elongation of coleoptiles under anoxic conditions.  相似文献   

4.
5.
Transcript profiling during preimplantation mouse development   总被引:2,自引:0,他引:2  
  相似文献   

6.
7.
Summary Ethylene stimulated growth of rice coleoptiles in the dark and after an irradiation with red light. The red-light inhibition of rice-coleoptile growth was more pronounced when only endogenously evolved C2H4 was involved than it was under C2H4-free (C2H4 removed) or C2H4-saturated (20 ppm C2H4 added) conditions.  相似文献   

8.
Stimulation of rice coleoptile growth by ethylene   总被引:1,自引:0,他引:1  
Summary The growth rate of rice coleoptiles is increased by low concentrations of ethylene, especially in oxygen concentrations lower than air; carbon dioxide enhanced this response. C2H4 is produced by rice seedlings, and this production is also enhanced by carbon dioxide. Ethane and propane were produced in trace amounts but were inactive in growth stimulation as were also methane, propylene, and butane.This investigation was supported in part by research grants (FD-00071 and GM-12885) from the U. S. Public Health Service.  相似文献   

9.
10.
As described previously, the sensitivity of rice (Oryza sativa L.) coleoptiles to auxin is modulated by oxygen. Under anoxia, coleoptile elongation is insensitive to exogenously applied indole-3-acetic acid (IAA), whereas its sensitivity increases in air in the presence of the exogenous stimulus. Here we report the presence of two independent classes of membrane-bound IAA-binding sites in air-grown coleoptiles. Their binding activity is strictly correlated with the system's sensitivity to IAA. We designate them as site A (high affinity) and site B (low affinity). Site A shows a relatively fast response to anoxia, and is highly specific for auxins. Regulation of site-A binding activity through ATP, whose availability decreases under anoxia, is postulated. A role as auxin carrier is suggested for site B.Abbreviations ABS(s) auxin-binding site(s) - IAA indole-3-acctic acid - NAA 2-naphthaleneacetic acid - ION3 valinomycin, nigericin, carbonylcyanide p-trifluoromethoxyphenyl hydrazone Dedicated to the memory of Professor G. Torti, who passed away on 2 May, 1988  相似文献   

11.
12.
Nucleoside diphosphate kinase required for coleoptile elongation in rice   总被引:6,自引:0,他引:6  
Pan L  Kawai M  Yano A  Uchimiya H 《Plant physiology》2000,122(2):447-452
Although several nucleoside diphosphate (NDP) kinase genes have been cloned in plants, little is known about the functional significance of this enzyme during plant growth and development. We introduced a chimeric gene encoding an antisense RNA of NDP kinase under the control of the Arabidopsis heat shock protein HSP81-1 promoter into rice (Oryza sativa L.) plants using the Agrobacterium tumefaciens transformation system. The expression of antisense RNA down-regulated the accumulation of mRNA, resulting in reduced enzyme activity even under the standard growth temperature (25 degrees C) in transgenic plants. Following heat shock treatment (37 degrees C), NDP kinase activities in some transgenic rice plants were more reduced than those grown under 25 degrees C. The comparison of the coleoptile growth under submersion showed that cell elongation process was inhibited in antisense NDP kinase transgenic plants, suggesting that an altered guanine nucleotide level may be responsible for the processes.  相似文献   

13.
14.
15.
The rice coleoptile: an example of anaerobic nitrate assimilation   总被引:2,自引:0,他引:2  
Nitrate present in rice caryopses can be reduced to ammonium and the ammonium subsequently assimilated by the coleoptile during anaerobic germination. All the enzymes of nitrate reduction and ammonia assimilation are present in the coleoptile. The supply of 15NO3 confirms that the nitrate nitrogen is anaerobically incorporated into amino acids. Under anoxia, nitrate and nitrite reductase activities are increased in the coleoptile by exogenous nitrate. The importance of nitrate utilization during the anaerobic germination of rice caryopses is discussed.  相似文献   

16.
N. Inada  A. Sakai  H. Kuroiwa  T. Kuroiwa 《Protoplasma》2000,214(3-4):180-193
Summary The coleoptile of rice (Oryza sativa L. cv. Nippon-bare) emerges from the imbibed seed on day 2 after sowing and ceases its growth on day 3. In cross section, the cells near the outer epidermis turn into green between days 2 and 3, while those near the inner epidermis remain colorless. In this study, the complete process of the development in the nongreening cells in the coleoptile was examined by fluorescence and electron microscopy. Embryonic morphology on day 0 was rapidly converted into the differentiated greening or nongreening cells between days 1 and 2. Senescence in the inner, nongreening region first appeared on day 4 in the third or fourth cell layer from the inner epidermis and then spread towards both the inner and the outer epidermis, and the inner cells collapsed completely before the outer cells senesced. Cells adjacent to the inner epidermis, which senesced slowly, followed a sequence of events during development: (1) degradation of plastid DNA; (2) dispersal of nuclear chromatin, differentiation of plastids into amyloplasts, degradation of mitochondrial DNA; (3) degradation of the starch in amyloplasts; (4) disorganization of plastids; (5) condensation of the nucleus, shrinkage of mitochondria; (6) complete loss of cellular components, distortion of cell walls. In the interior cells, the early events including degeneration of plastid DNA and mitochondrial DNA occurred in parallel with those in the cells adjacent to the inner epidermis, yet rapid collapse of all the cellular components proceeded between days 3 and 5, and nuclear condensation could not be detected.Abbreviations cpDNA chloroplast DNA - DAPI 4,6-diamidino-2-phenylindole - DiOC7 3,3-dihexyloxacarbocyanine - IE inner epidermis - mtDNA mitochondrial DNA - mt-nucleoid mitochondrial nucleoid - OE outer epidermis - ptDNA plastid DNA - pt-nucleoid plastid nucleoid  相似文献   

17.
To investigate the presence of a possible synergistic effect of IAA and anaerobiosis on rice coleoptile elongation, excised coleoptiles grown in aerobic and anaerobic conditions were tested and compared with intact seedling aerial parts for response to exogenous IAA and for levels of endogenous IAA. Excised coleoptiles were fed with3H-IAA to study aerobic and anaerobic IAA metabolism. Our results can be summarized as follows. (1) IAA and anaerobiosis have no synergistic effect on rice coleoptile elongation. (2) This behavior is due not to an inhibition of IAA uptake but probably to a reduced and different IAA metabolism in coleoptile grown in the absence of oxygen. (3) In anaerobic rice coleoptiles, the conversion to inactive conjugate (IAA-Asp) could be adopted as means of detoxification in the case of abnormally high and unutilized IAA levels. (4) The increase in IAA level found in coleoptiles of intact seedlings during anaerobic treatment could be due, as in the roots, to a translocation from the endosperm, in which the hormone is contained in a great quantity.  相似文献   

18.
Among starchy seeds, rice has the unique capacity to germinate successfully under complete anaerobiosis. In this conditions, starch degradation is supported by a complete set of starch-degrading enzymes that are absent or inactive in cereals except rice. A characterization of carbohydrate metabolism and starch-degrading enzyme activity across twenty-nine genotypes of Oryza sativa L. is presented here. The zymogram of amylolytic activities present in rice embryos and endosperms under anaerobic conditions seven days after sowing (DAS) revealed marked differences among cultivars. Coleoptile elongation was positively correlated with total amylolytic activities and α-amylase activity in embryos, and negatively correlated with α-amylase activity in endosperm. Moreover, carbohydrate content in embryos was found to be positively correlated with total amylolytic activities under anaerobic conditions, while a negative relationship was recorded in the endosperm. Carbohydrate status in rice seedlings has a primary importance in sustaining coleoptile elongation towards the surface. The relationship between carbohydrate level in embryo and anoxic germination, as well as with total amylolytic activities present in rice embryo under anaerobic condition 7 DAS, is consistent with the role of sugar metabolism to support rice germination under oxygen-deprived environment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号