首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important step when designing a vaccine is identifying the antigens that function as targets of naturally acquired antibodies. We investigated specific antibody responses against two Plasmodium vivax vaccine candidates, PvMSP-119 and PvMSP-3α359?798. Moreover, we assessed the relationship between these antibodies and morbidity parameters. PvMSP-119 was the most immunogenic antigen and the frequency of responders to this protein tended to increase in P. vivax patients with higher parasitemia. For both antigens, IgG antibody responses tended to be lower in patients who had experienced their first bout of malaria. Furthermore, anemic patients presented higher IgG antibody responses to PvMSP-3α359?798. Since the humoral response involves a number of antibodies acting simultaneously on different targets, we performed a Principal Component Analysis (PCA). Anemic patients had, on average, higher first principal component scores (IgG1/IgG2/IgG3/IgG4 anti-MSP3α), which were negatively correlated with hemoglobin levels. Since antibodies against PfMSP-3 have been strongly associated with clinical protection, we cannot exclude the possibility of a dual role of PvMSP-3 specific antibodies in both immunity and pathogenesis of vivax malaria. Our results confirm the high immunogenicity of the conserved C terminus of PvMSP-1 and points to the considerable immunogenicity of polymorphic PvMSP-3α359?798 during natural infection.  相似文献   

2.

Background

A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-119, the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175.

Method

Healthy malaria naïve Indian male subjects aged 18–45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10μg, 25μg and 50μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180.

Results

JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-119. Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain.

Conclusion

Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-119 construct needs to be optimised to improve its immunogenicity.

Trial Registration

Clinical Trial Registry, India CTRI/2010/091/000301  相似文献   

3.
Plasmodium merozoite surface protein-1 (MSP-1) is an essential antigen for the merozoite invasion of erythrocytes. A key challenge to the development of an effective malaria vaccine that can block the erythrocyte invasion is to establish the molecular interaction(s) among the parasite surface proteins as well as with the host cell encoded receptors. In the present study, we applied molecular interactions and proteome approaches to identify PfMSP-1 associated complex on the merozoite surface. Proteomic analysis identified a major malaria surface protein, PfRhopH3 interacting with PfMSP-1(42). Pull-down experiments with merozoite lysate using anti-PfMSP-1 or anti-PfRhopH3 antibodies showed 16 bands that when identified by tandem mass spectrometry corresponded to11 parasite proteins: PfMSP-3, PfMSP-6, PfMSP-7, PfMSP-9, PfRhopH3, PfRhopH1, PfRAP-1, PfRAP-2, and two RAP domain containing proteins. This MSP-1 associated complex was specifically seen at schizont/merozoite stages but not the next ring stage. We could also identify many of these proteins in culture supernatant, suggesting the shedding of the complex. Interestingly, the PfRhopH3 protein also showed binding to the human erythrocyte and anti-PfRhopH3 antibodies blocked the erythrocyte invasion of the merozoites. These results have potential implications in the development of PfMSP-1 based blood stage malaria vaccine.  相似文献   

4.

Background

Plasmodium falciparum merozoite surface protein 5 (PfMSP5) is an attractive blood stage vaccine candidate because it is both exposed to the immune system and well conserved. To evaluate its interest, we investigated the association of anti-PfMSP5 IgG levels, in the context of responses to two other conserved Ags PfMSP1p19 and R23, with protection from clinical episodes of malaria in cross-sectional prospective studies in two different transmission settings.

Methods

Ndiop (mesoendemic) and Dielmo (holoendemic) are two Senegalese villages participating in an on-going long-term observational study of natural immunity to malaria. Blood samples were taken before the transmission season (Ndiop) or before peak transmission (Dielmo) and active clinical surveillance was carried out during the ensuing 5.5-month follow-up. IgG responses to recombinant PfMSP5, PfMSP1p19 and R23 were quantified by ELISA in samples from surveys carried out in Dielmo (186 subjects) and Ndiop (221 subjects) in 2002, and Ndiop in 2000 (204 subjects). In addition, 236 sera from the Dielmo and Ndiop-2002 surveys were analyzed for relationships between the magnitude of anti-PfMSP5 response and neutrophil antibody dependent respiratory burst (ADRB) activity.

Results

Anti-PfMSP5 antibodies predominantly IgG1 were detected in 60–74% of villagers, with generally higher levels in older age groups. PfMSP5 IgG responses were relatively stable for Ndiop subjects sampled both in 2000 and 2002. ADRB activity correlated with age and anti-PfMSP5 IgG levels. Importantly, PfMSP5 antibody levels were significantly associated with reduced incidence of clinical malaria in all three cohorts. Inclusion of IgG to PfMSP1p19 in the poisson regression model did not substantially modify results.

Conclusion

These results indicate that MSP5 is recognized by naturally acquired Ab. The large seroprevalence and association with protection against clinical malaria in two settings with differing transmission conditions and stability over time demonstrated in Ndiop argue for further evaluation of baculovirus PfMSP5 as a vaccine candidate.  相似文献   

5.
The merozoite surface protein-1 (MSP-1) of Plasmodium falciparum comprises two major targets of antibody-mediated immunity: the polymorphic block 2 and the 19-kDa C-terminal domain MSP-1(19). Here, we measured antibodies to three block 2 variants and MSP-1(19) among Amazonian gold miners and examined the repertoire of block 2 variants in local parasites. Main findings were as follows: (1) Only seven different block 2 variants were found in 18 DNA sequences analyzed. (2) No major difference was observed in IgG subclass distribution of antibodies from symptomatic P. falciparum-infected patients, asymptomatic parasite carriers, and non-infected subjects. (3) Antibodies to all block 2 antigens, but not to MSP-1(19), were biased towards IgG3 across different strata of cumulative malaria exposure. (4) Similar proportions of symptomatic and asymptomatic subjects failed to recognize the block 2 variant expressed by infecting parasites. These negative results underscore the limits of conventional antibody assays to evaluate clinical immunity to malaria.  相似文献   

6.
In the present study, we evaluate the naturally acquired antibody response to the Plasmodium vivax apical membrane antigen 1 (PvAMA-1), a leading vaccine candidate against malaria. The gene encoding the PvAMA-1 ectodomain region (amino acids 43-487) was cloned by PCR using genomic DNA from a Brazilian individual with patent P. vivax infection. The predicted amino acid sequence displayed a high degree of identity (97.3%) with a previously published sequence from the P. vivax Salvador strain. A recombinant protein representing the PvAMA-1 ectodomain was expressed in Escherichia coli and refolded. By ELISA, this recombinant protein reacted with 85 and 48.5% of the IgG or IgM antibodies, respectively, from Brazilian individuals with patent P. vivax malaria. IgG1 was the predominant subclass of IgG. The frequency of response increased according to the number of malaria episodes, reaching 100% in individuals in their fourth malaria episode. The high degree of recognition of PvAMA-1 by human antibodies was confirmed using a second recombinant protein expressed in Pichia pastoris (PV66/AMA-1). The observation that recognition of the bacterial recombinant PvAMA-1 was only slightly lower than that of the highly immunogenic 19kDa C-terminal domain of the P. vivax Merozoite Surface Protein-1 was also important. DNA sequencing of the PvAMA-1 variable domain from 20 Brazilian isolates confirmed the limited polymorphism of PvAMA-1 suggested by serological analysis. In conclusion, we provide evidence that PvAMA-1 is highly immunogenic during natural infection in humans and displays limited polymorphism in Brazil. Based on these observations, we conclude that PvAMA-1 merits further immunological studies as a vaccine candidate against P. vivax malaria.  相似文献   

7.
The C-terminal, 19-kDa domain of Plasmodium falciparum merozoite surface protein-1 (PfMSP-119) is among the leading vaccine candidate for malaria due to its essential role in erythrocyte invasion by the parasite. We designed a synthetic gene for optimal expression of recombinant PfMSP-119 in Escherichia coli and developed a scalable process to obtain high-quality PfMSP-119. The synthetic gene construct yielded a fourfold higher expression level of PfMSP-119 in comparison to the native gene construct. Optimization of cultivation conditions in the bioreactor indicated important role of yeast extract and substrate feeding strategy for obtaining enhanced expression of soluble and correctly folded PfMSP-119. It was observed that the higher expression level of PfMSP-119 was essentially associated with the generation of higher level of incorrectly folded PfMSP-119. A simple purification procedure comprising metal affinity and ion exchange chromatography was developed to purify correctly folded form of PfMSP-119 from cell lysate. Biochemical and biophysical characterization of purified PfMSP-119 suggested that it was highly pure, homogeneous, and correctly folded.  相似文献   

8.
The C-terminal 19-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP-1(19)) is a target of protective Abs against blood-stage infection and a leading candidate for inclusion in a human malaria vaccine. However, the precise role, relative importance, and mechanism of action of Abs that target this protein remain unclear. To examine the potential protective role of Abs to MSP-1(19) in individuals naturally exposed to malaria, we conducted a treatment time to infection study over a 10-wk period in 76 residents of a highland area of western Kenya during a malaria epidemic. These semi-immune individuals were not all equally susceptible to reinfection with P. falciparum following drug cure. Using a new neutralization assay based on transgenic P. falciparum expressing the P. chabaudi MSP-1(19) orthologue, individuals with high-level MSP-1(19)-specific invasion-inhibitory Abs (>75th percentile) had a 66% reduction in the risk of blood-stage infection relative to others in the population (95% confidence interval, 3-88%). In contrast, high levels of MSP-1(19) IgG or IgG subclass Abs measured by enzyme immunoassay with six different recombinant MSP-1(19) Ags did not correlate with protection from infection. IgG Abs measured by serology and functional invasion-inhibitory activity did not correlate with each other. These findings implicate an important protective role for MSP-1(19)-specific invasion inhibitory Abs in immunity to blood-stage P. falciparum infection, and suggest that the measurement of MSP-1(19) specific inhibitory Abs may serve as an accurate correlate of protection in clinical trials of MSP-1-based vaccines.  相似文献   

9.
Murine immunoglobulin G (IgG) plays an important role in mediating protective immune responses to malaria. We still know relatively little about which IgG subclasses protect against this disease in mouse models, although IgG2a and IgG2b are considered to be the most potent and dominate in successful passive transfer experiments in rodent malarias. To explore the mechanism(s) by which the different mouse IgG subclasses may mediate a protective effect, we generated mouse IgG1, IgG2a, IgG2b and IgG3 specific for the C-terminal 19-kDa region of Plasmodium falciparum merozoite surface protein 1 (PfMSP1(19)), and to the homologous antigen from Plasmodium yoelii (P. yoelii), both major targets of protective immune responses. This panel of eight IgGs bound antigen with an affinity comparable to that seen for their epitope-matched parental monoclonal antibodies (mAbs) from which they were derived, although for reasons of yield, we were only able to explore the function of mouse IgG1 recognizing PfMSP1(19) in detail, both in vitro and in vivo. Murine IgG1 was as effective as the parental human IgG from which it was derived at inducing NADPH-mediated oxidative bursts and degranulation from neutrophils. Despite showing efficacy in in vitro functional assays with neutrophils, the mouse IgG1 failed to protect against parasite challenge in vivo. The lack of protection afforded by MSP1(19)-specific IgG1 against parasite challenge in wild type mice suggests that this Ab class does not play a major role in the control of infection with mouse malaria in the Plasmodium berghei transgenic model.  相似文献   

10.
The C-terminal region of the merozoite surface protein 1 (MSP1_(19)) is one of the mostpromising vaccine candidates against the erythrocytic forms of malaria.In the present study,a gene encodingPlasmodium falciparum MSP1_(19) was expressed in yeast Pichia pastoris.A non-glycosylated form of therecombinant protein MSP1_(19) was purified from culture medium.This recombinant protein maintains itsantigenicity.Significant immune responses were seen in C57BL/6 mice after the second immunization.Moreover,the specific antibodies recognized the native antigens of P.falciparum,The prevailing isotypesof immunoglobulin (Ig)G associated with immunization were IgG1,IgG2a and IgG2b.The antibodiesisolated from mouse sera immunized with MSP1_(19) can inhibit parasite growth in vitro.Based on theseimmunological studies,we concluded that MSP1_(19) deserves further evaluation in pre-clinical immunizationsagainst P.falciparum.  相似文献   

11.
Glycosylphosphatidylinositol (GPI) membrane anchors of Plasmodium falciparum surface proteins are thought to be important factors contributing to malaria pathogenesis, and anti-GPI antibodies have been suggested to provide protection by neutralizing the toxic activity of GPIs. In this study, IgG responses against P. falciparum GPIs and a baculovirus recombinant MSP1p19 antigen were evaluated in two distinct groups of 70 patients each, who were hospitalized with malaria. Anti-GPI IgGs were significantly lower in patients hospitalized with confirmed cerebral malaria compared to those with mild malaria (P < 0.01) but did not discriminate for fatal outcome. In contrast, a specific marker of the anti-parasite immunity, as monitored by the anti-MSP1p19 IgG response, was similar in both cerebral and mild malaria individuals, although it was significantly lower in a subgroup with fatal outcomes. These results are consistent with a potential anti-toxin role for anti-GPI antibodies associated with protection against cerebral malaria.  相似文献   

12.
BACKGROUND: Serological tests to detect antibodies specific to Plasmodium vivax could be a valuable tool for epidemiological studies, for screening blood donors in areas where the malaria is not endemic and for diagnosis of infected individuals. Because P. vivax cannot be easily obtained in vitro, ELISA assays using total or semi-purified antigens are rarely used. Based on this limitation, we tested whether recombinant proteins representing the 19 kDa C-terminal region of the merozoite surface protein-1 of P. vivax (MSP119) could be useful for serological detection of malaria infection. METHODS: Three purified recombinant proteins produced in Escherichia coli (GST-MSP119, His6-MSP119 and His6-MSP119-PADRE) and one in Pichia pastoris (yMSP119-PADRE) were compared for their ability to bind to IgG antibodies of individuals with patent P. vivax infection. The method was tested with 200 serum samples collected from individuals living in the north of Brazil in areas endemic for malaria, 53 serum samples from individuals exposed to Plasmodium falciparum infection and 177 serum samples from individuals never exposed to malaria. RESULTS: Overall, the sensitivity of the ELISA assessed with sera from naturally infected individuals was 95%. The proportion of serum samples that reacted with recombinant proteins GST-MSP119, His6-MSP119, His6-MSP119-PADRE and yMSP119-PADRE was 90%, 93.5%, 93.5% and 93.5%, respectively. The specificity values of the ELISA determined with sera from healthy individuals and from individuals with other infectious diseases were 98.3% (GST-MSP119), 97.7% (His6-MSP119 and His6-MSP119-PADRE) or 100% (yMSP119-PADRE). CONCLUSIONS: Our study demonstrated that for the Brazilian population, an ELISA using a recombinant protein of the MSP119 can be used as the basis for the development of a valuable serological assay for the detection of P. vivax malaria.  相似文献   

13.
Infants born in areas of stable malaria transmission are relatively protected against severe morbidity and high density Plasmodium falciparum blood-stage infection. This protection may involve prenatal sensitization and immunologic reactivity to malaria surface ligands that participate in invasion of red cells. We examined cord blood T and B cell immunity to P. falciparum merozoite surface protein-1 (MSP-1) in infants born in an area of stable malaria transmission in Kenya. T cell cytokine responses to the C-terminal 19-kDa fragment of MSP-1 (MSP-1(19)) were detected in 24 of 92 (26%) newborns (4-192 IFN-gamma and 3-88 IL-4-secreting cells per 10(6)/cord blood lymphocytes). Peptide epitopes in the N-terminal block 3 region of MSP-1 also drove IFN-gamma and/or IL-13 production. There was no evidence of prenatal T cell sensitization to liver-stage Ag-1. A total of 5 of 86 (6%) newborns had cord blood anti-MSP-1(19) IgM Abs, an Ig isotype that does not cross the placenta and is therefore of fetal origin. The frequency of neonatal B cell sensitization was higher than that indicated by serology alone, as 5 of 27 (18%) cord blood samples contained B cells that produced IgG when stimulated with MSP-1(19) in vitro. Neonatal B cell IgG responses were restricted to the Q-KNG allele of MSP-1(19), the major variant in this endemic area, whereas T cells responded to all four MSP-1(19) alleles evaluated. In utero sensitization to MSP-1 correlated with the presence of malaria parasites in cord blood (chi(2) = 20, p < 0.0001). These data indicate that prenatal sensitization to blood-stage Ags occurs in infants born in malaria endemic areas.  相似文献   

14.
Polymorphism in the beta-globin gene (hemoglobin S) has been associated with protection against severe forms of malaria. In a cross-sectional study, 180 young Gabonese children with and without sickle cell trait and harboring asymptomatic Plasmodium falciparum infections, were assessed for the responses to recombinant protein containing the conserved region of glutamate-rich protein (GLURP). We reported increased age-dependence of antibody prevalence and levels of total IgG (p<0.0001), IgG1 (p=0.009), and IgG3 (p<0.03) antibodies to GLURP with a cut-off at 5 years of age. Whatever the hemoglobin type, cytophilic antibodies (IgG1 and IgG3) were prevalent, but GLURP-specific IgG4 antibodies were detected at significantly (p<0.05) lower levels in HbAS children. We showed that the distribution of non-cytophilic IgG antibodies differs according to the hemoglobin type and to the malaria antigens tested. This may have possible implication for the clearance of malaria parasites and for protection against severe malaria.  相似文献   

15.
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.  相似文献   

16.
Antibody responses directed against the Plasmodium falciparum antigens, total extract, anti-merozoite surface protein-3 (MSP3b) and glutamate-rich protein (Glurp-R0) were studied in 42 children exposed to both Schistosoma haematobium and P. falciparum infections. The association between levels of the anti-malaria IgG subclasses and IgM with host age, sex, schistosome infection intensity and schistosome specific antibodies was studied before chemotherapeutic treatment of schistosome infections. This showed a significant negative association between schistosome infection intensity and levels of IgG1, IgG3, and IgG4 directed against malaria total extract antigen, and a positive association between levels of anti-schistosome soluble egg antigen IgG2, IgG3, and IgG4 and levels of the same subclasses directed against malaria total extract antigens. The effect of treating schistosome infections with praziquantel on malaria specific responses was also studied. This treatment resulted in increases in significant IgG4 levels against MSP3b and IgM against Glurp R0. Treatment also resulted in a significant decrease in IgG4 levels against Glurp R0. Host age, sex or pre-treatment infection intensity was not associated with the magnitude of change in the two IgG4 responses while males showed a significantly higher increase in levels of IgM. The results suggest cross reactivity between schistosome and malaria antigens in this population.  相似文献   

17.
Clinical protection of Beninese children against Plasmodium falciparum malaria was shown to be influenced by immunoglobulin (IG) Gm and Km allotypes, and related to seroreactivity with the rosette-forming VarO-antigenic variant. IgG to the VarO-infected erythrocyte surface, IgG1 and IgG3 to PfEMP1-NTS-DBL1α(1)-VarO were higher in the under 4-year-old children carrying the Gm 5,6,13,14;1,17 phenotype. In contrast, surface-reactive IgG, total IgG, IgG1 and IgG3 to NTS-DBL1α(1)- and DBL2βC2-VarO domains were lower in the above 4-year-old children harbouring the Km1 allotype. These data outline an age-related association of antibodies against malaria antigens and IG allotype distribution.  相似文献   

18.
Abstract In Manarintsoa, near Antananarivo, Madagascar, two groups of patients were defined in terms of malaria clinical immune status: Group MA+ consisted of 36 patients who suffered from between one to four malaria attacks (MA) during the 20-week study, and Group MA who comprised of 48 persons who did not have any malaria attacks during this time. In group MA+, IgM and IgG antibody levels to Plasmodium falciparum exoantigens (E-Ag) were inversely related to the number of malaria attacks. The level of IgM antibodies were significantly higher in group MA+. In contrast, IgG, IgG1, IgG2, IgG3 and IgG4 antibodies to E-Ag were significantly higher in group MA. The level of IgG1 antibodies was inversely correlated, and IgG2 antibodies were positively correlated to the number of malaria attacks.  相似文献   

19.
Plasmodium vivax blood-stage invasion into reticulocyte is critical for parasite development. Thus, validation of novel parasite invasion ligands is essential for malaria vaccine development. Recently, we demonstrated that EBP2, a Duffy binding protein (DBP) paralog, is antigenically distinct from DBP and could not be functionally inhibited by anti-DBP antibodies. Here, we took advantage of a small outbreak of P.vivax malaria, located in a non-malarious area of Brazil, to investigate for the first time IgM/IgG antibodies against EBP2 and DEKnull-2 (an engineering DBPII vaccine) among individuals who had their first and brief exposure to P.vivax (16 cases and 22 non-cases). Our experimental approach included 4 cross sectional surveys at 3-month interval (12-month follow-up). The results demonstrated that while a brief initial P.vivax infection was not efficient to induce IgM/ IgG antibodies to either EBP2 or DEKnull-2, IgG antibodies against DEKnull-2 (but not EBP2) were boosted by recurrent blood-stage infections following treatment. Of interest, in most recurrent P. vivax infections (4 out of 6 patients) DEKnull-2 IgG antibodies were sustained for 6 to 12 months. Polymorphisms in the ebp2 gene does not seem to explain EBP2 low immunogenicity as the ebp2 allele associated with the P.vivax outbreak presented high identity to the original EBP2 isolate used as recombinant protein. Although EBP2 antibodies were barely detectable after a primary episode of P.vivax infection, EBP2 was highly recognized by serum IgG from long-term malaria-exposed Amazonians (range from 35 to 92% according to previous malaria episodes). Taken together, the results showed that individuals with a single and brief exposure to P.vivax infection develop very low anti-EBP2 antibodies, which tend to increase after long-term malaria exposure. Finally, the findings highlighted the potential of DEKnull-2 as a vaccine candidate, as in non-immune individuals anti-DEKnull-2 IgG antibodies were boosted even after a brief exposure to P.vivax blood stages.  相似文献   

20.
African infants are often born of mothers infected with malaria during pregnancy. This can result in fetal exposure to malaria-infected erythrocytes or their soluble products with subsequent fetal immune priming or tolerance in utero. We performed a cohort study of 30 newborns from a malaria holoendemic area of Kenya to determine whether T cell sensitization to Plasmodium falciparum merozoite surface protein-1 (MSP-1) at birth correlates with infant development of anti-MSP-1 Abs acquired as a consequence of natural malaria infection. Abs to the 42- and 19-kDa C-terminal processed fragments of MSP-1 were determined by serology and by a functional assay that quantifies invasion inhibition Abs against the MSP-1(19) merozoite ligand (MSP-1(19) IIA). Infants had detectable IgG and IgM Abs to MSP-1(42) and MSP-1(19) at 6 mo of age with no significant change by age 24-30 mo. In contrast, MSP-1(19) IIA levels increased from 6 to 24-30 mo of age (16-29%, p < 0.01). Infants with evidence of prenatal exposure to malaria (defined by P. falciparum detection in maternal, placental, and/or cord blood compartments) and T cell sensitization at birth (defined by cord blood lymphocyte cytokine responses to MSP-1) showed the greatest age-related increase in MSP-1(19) IIA compared with infants with prenatal exposure to malaria but who lacked detectable T cell MSP-1 sensitization. These data suggest that fetal sensitization or tolerance to MSP-1, associated with maternal malaria infection during pregnancy, affects the development of functional Ab responses to MSP-1 during infancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号