首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Vascular endothelial apoptosis is closely associated with the pathogenesis and progression of diabetic macrovascular diseases. Selenoprotein S (SelS) participates in the protection of vascular endothelial and smooth muscle cells from oxidative and endoplasmic reticulum stress-induced injury. However, whether SelS can protect vascular endothelium from high glucose (HG)-induced apoptosis and the underlying mechanism remains unclear. The present study preliminarily analyzed aortic endothelial apoptosis and SelS expression in diabetic rats in vivo and the effects of HG on human umbilical vein endothelial cell (HUVEC) apoptosis and SelS expression in vitro. Subsequently, SelS expression was up- or downregulated in HUVECs using the pcDNA3.1-SelS recombinant plasmid and SelS-specific small interfering RNAs, and the effects of high/low SelS expression on HG-induced HUVEC apoptosis and a possible molecular mechanism were analyzed. As expected, HG induced vascular endothelial apoptosis and upregulated endothelial SelS expression in vivo and in vitro. SelS overexpression in HUVECs suppressed HG-induced increase in apoptosis and cleaved caspase3 level, accompanied by reduced protein kinase CβII (PKCβII), c-JUN N-terminal kinase (JNK), and B-cell lymphoma/leukemia-2 (Bcl-2) phosphorylation. In contrast, inhibiting SelS expression in HUVECs further aggravated HG-induced increase in apoptosis and cleaved caspase3 level, which was accompanied by increased PKCβII, JNK, and Bcl-2 phosphorylation. Pretreatment with PKC activators blocked the protective effects of SelS and increased the apoptosis and cleaved caspase3 level in HUVECs. In summary, SelS protects vascular endothelium from HG-induced apoptosis, and this was achieved through the inhibition of PKCβII/JNK/Bcl-2 pathway to eventually inhibit caspase3 activation. SelS may be a promising target for the prevention and treatment of diabetic macrovascular complications.  相似文献   

2.
Nicotine is not only a major component in tobacco but is also a survival agonist that inhibits apoptosis induced by diverse stimuli including chemotherapeutic drugs. However, the intracellular mechanism(s) involved in nicotine suppression of apoptosis is unclear. Bcl2 is a potent antiapoptotic protein and tumor promotor that is expressed in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cells. It is possible that nicotine may regulate Bcl2 to stimulate cell survival. Here we report that nicotine can induce Bcl2 phosphorylation exclusively at the serine 70 site in association with prolonged survival of SCLC H82 cells expressing wild-type but not the phosphorylation-deficient S70A mutant Bcl2 after treatment with chemotherapeutic agents (i.e. cisplatin or VP-16). Nicotine induces activation of PKC alpha and the MAPKs ERK1 and ERK2, which are physiological Bcl2 kinases. Furthermore, ET-18-OCH3, a specific phospholipase C (PLC) inhibitor, blocks nicotine-stimulated Bcl2 phosphorylation and promotes apoptosis, suggesting that PLC may be involved in nicotine activation of Bcl2 kinases. Using a genetic approach, the gain-of-function S70E mutant, which mimics Ser(70) site phosphorylation in the flexible loop domain, potently enhances chemoresistance in SCLC cells. Thus, nicotine-induced cell survival results, at least in part, from a mechanism that involves Bcl2 phosphorylation. Therefore, novel therapeutic strategies for lung cancer in which Bcl2 is expressed may be used to abrogate the anti-apoptotic activity of Bcl2 by inhibiting multiple upstream nicotine-activated pathways.  相似文献   

3.
The calcium ionophore ionomycin cooperates with the S100B protein to rescue a p53-dependent G(1) checkpoint control in S100B-expressing mouse embryo fibroblasts and rat embryo fibroblasts (REF cells) which express the temperature-sensitive p53Val135 mutant (C. Scotto, J. C. Deloulme, D. Rousseau, E. Chambaz, and J. Baudier, Mol. Cell. Biol. 18:4272-4281, 1998). We investigated in this study the contributions of S100B and calcium-dependent PKC (cPKC) signalling pathways to the activation of wild-type p53. We first confirmed that S100B expression in mouse embryo fibroblasts enhanced specific nuclear accumulation of wild-type p53. We next demonstrated that wild-type p53 nuclear translocation and accumulation is dependent on cPKC activity. Mutation of the five putative cPKC phosphorylation sites on murine p53 into alanine or aspartic residues had no significant effect on p53 nuclear localization, suggesting that the cPKC effect on p53 nuclear translocation is indirect. A concerted regulation by S100B and cPKC of wild-type p53 nuclear translocation and activation was confirmed with REF cells expressing S100B (S100B-REF cells) overexpressing the temperature-sensitive p53Val135 mutant. Stimulation of S100B-REF cells with the PKC activator phorbol ester phorbol myristate acetate (PMA) promoted specific nuclear translocation of the wild-type p53Val135 species in cells positioned in early G(1) phase of the cell cycle. PMA also substituted for ionomycin in the mediating of p53-dependent G(1) arrest at the nonpermissive temperature (37.5 degrees C). PMA-dependent growth arrest was linked to the cell apoptosis response to UV irradiation. In contrast, growth arrest mediated by a temperature shift to 32 degrees C protected S100B-REF cells from apoptosis. Our results suggest a model in which calcium signalling, linked with cPKC activation, cooperates with S100B to promote wild-type p53 nuclear translocation in early G(1) phase and activation of a p53-dependent G(1) checkpoint control.  相似文献   

4.
Both protein kinase C (PKC) activation and Hsp70 expression have been shown to be key components for exercise-mediated myocardial protection during ischemia-reperfusion injury. Given that Hsp70 has been shown to undergo inducible phosphorylation in striated muscle and liver, we hypothesized that PKC may regulate myocardial Hsp70 function and subsequent exercise-conferred cardioprotection through this phosphorylation. Hence, acute exercise of male Sprague-Dawley rats (30 m/min for 60 min at 2% grade) was employed to assess the role of PKC and its selected isoforms in phosphorylation of Hsp70 and protection of the myocardium during ischemia-reperfusion injury. It was observed that administration of the PKC inhibitor chelerythrine chloride (5 mg/kg) suppressed the activation of three exercise-induced PKC isoforms (PKCalpha, PKCdelta, and PKCepsilon) and attenuated the exercise-mediated reduction of myocardial infarct size during ischemia-reperfusion injury. While this study also demonstrated that exercise led to an alteration in the phosphorylation status of Hsp70, this posttranslational modification appeared to be dissociated from PKC activation, as exercise-induced phosphorylation of Hsp70 was unchanged following inhibition of PKC. Taken together, these results indicate that selected isoforms of PKC play an important role in exercise-mediated protection of the myocardium during ischemia-reperfusion injury. However, exercise-induced phosphorylation of Hsp70 does not appear to be a mechanism by which PKC induces this cardioprotective effect.  相似文献   

5.
The role of Bcl-2 in photodynamic therapy (PDT) is controversial, and some photosensitizers have been shown to induce Bcl-2 degradation with loss of its protective function. Hypericin is a naturally occurring photosensitizer with promising properties for the PDT of cancer. Here we show that, in HeLa cells, photoactivated hypericin does not cause Bcl-2 degradation but induces Bcl-2 phosphorylation in a dose- and time-dependent manner. Bcl-2 phosphorylation is induced by sublethal PDT doses; increasing the photodynamic stress promptly leads to apoptosis, during which Bcl-2 is neither phosphorylated nor degraded. Bcl-2 phosphorylation involves mitochondrial Bcl-2 and correlates with the kinetics of a G(2)/M cell cycle arrest, preceding apoptosis. The co-localization of hypericin with alpha-tubulin and the aberrant mitotic spindles observed following sublethal PDT doses suggest that photodamage to the microtubule network provokes the G(2)/M phase arrest. PDT-induced Bcl-2 phosphorylation is not altered by either the overexpression or inhibition of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH(2)-terminal protein kinase 1 (JNK1) nor by inhibiting the extracellular signal-regulated kinases (ERKs) or protein kinase C. By contrast, Bcl-2 phosphorylation is selectively suppressed by the cyclin-dependent protein kinase (CDK)-inhibitor roscovitine, completely blocked by the protein synthesis inhibitor cycloheximide and enhanced by the overexpression of CDK1, suggesting a role for this pathway. However, in an in vitro kinase assay, active CDK1/cyclin B1 complex failed to phosphorylate immunoprecipitated Bcl-2, suggesting that this protein kinase may not directly modify Bcl-2. Mutation of serine-70 to alanine in Bcl-2 abolishes PDT-induced phosphorylation and restores the caspase-3 activation to the same levels of the vector-transfected cells, indicating that Bcl-2 phosphorylation may be a signal to delay apoptosis in G(2)/M phase-arrested cells.  相似文献   

6.
Using monolayers of intestinal Caco-2 cells, we reported that activation of NF-kappaB is required for oxidative disruption and that EGF protects against this injury but the mechanism remains unclear. Activation of the PKC-beta1 isoform is key to monolayer barrier integrity. We hypothesized that EGF-induced activation of PKC-beta1 prevents oxidant-induced activation of NF-kappaB and the consequences of NF-kappaB activation, F-actin, and barrier dysfunction. We used wild-type (WT) and transfected cells. The latter were transfected with varying levels of cDNA to overexpress or underexpress PKC-beta1. Cells were pretreated with EGF or PKC modulators +/- oxidant. Pretreatment with EGF protected monolayers by increasing native PKC-beta1 activity, decreasing IkappaBalpha phosphorylation/degradation, suppressing NF-kappaB activation (p50/p65 subunit nuclear translocation/activity), enhancing stable actin (increased F-actin-to-G-actin ratio), increasing stability of actin cytoskeleton, and reducing barrier hyperpermeability. Cells stably overexpressing PKC-beta1 were protected by low, previously nonprotective doses of EGF or modulators. In these clones, we found enhanced IkappaBalpha stabilization, NF-kappaB inactivation, actin stability, and barrier function. Low doses of the modulators led to increases in PKC-beta1 in the particulate fractions, indicating activation. Stably inhibiting endogenous PKC-beta1 substantially prevented all measures of EGF's protection against NF-kappaB activation. We conclude that EGF-mediated protection against oxidant disruption of the intestinal barrier function requires PKC-beta1 activation and NF-kappaB suppression. The molecular event underlying this unique effect of PKC-beta1 involves inhibition of phosphorylation and increases in stabilization of IkappaBalpha. The ability to inhibit the dynamics of NF-kappaB/IkappaBalpha and F-actin disassembly is a novel mechanism not previously attributed to the classic subfamily of PKC isoforms.  相似文献   

7.
In this study, we demonstrate that interleukin-4 (IL-4) protects human hepatocellular carcinoma (HCC) cell line Hep3B from apoptosis induced by transforming growth factor-β (TGF-β). Further investigation of IL-4-transduced signaling pathways revealed that both insulin response substrate 1 and 2 (IRS-1/-2) and extracellular signal-regulated kinase (ERK) pathways were activated after IL-4 stimulation. The IRS-1/-2 activation was accompanied by the activation of phosphotidylinositol-3-kinase (PI3K), leading to Akt and p70 ribosomal protein S6 kinase (p70S6K). Interestingly, a protein kinase C (PKC) inhibitor, Gö6976, inhibited the phosphorylation of Akt, suggesting that the Akt activation was PKC-dependent. Using specific inhibitors for PI3K or ERK, we demonstrated that the PI3K pathway, but not the ERK pathway, was required for protection. The constitutively active form of PI3K almost completely rescued TGF-β-induced apoptosis, further supporting the importance of the PI3K pathway in the protective effect of IL-4. Furthermore, a dominant negative Akt and/or Gö6976 only partially blocked the anti-apoptotic effect of IL-4. Similarly, rapamycin, which interrupted the activation of p70S6K, also only partially blocked the protective effect of IL-4. However, in the presence of both rapamycin and dominant negative Akt with or without Gö6976, IL-4 almost completely lost the anti-apoptotic effect, suggesting that both Akt and p70S6K pathways were required for the protective effect of IL-4 against TGF-β-induced apoptosis.  相似文献   

8.
Bai XC  Liu AL  Deng F  Zou ZP  Bai J  Ji QS  Luo SQ 《Journal of biochemistry》2002,131(2):207-212
The consequences of heat-induced phospholipase C-gamma1 (PLC-gamma1) phosphorylation are not known. We investigated the role of PLC-gamma1 activation and its downstream targets during the cellular response to heat stress using mouse embryonic fibroblasts genetically deficient in PLC-gamma1 (Plcg1 null MEF) and its wild type (wt MEF) as models. Treatment of wt MEF with heat resulted in temperature- and heating duration-dependent tyrosine phosphorylation of PLC-gamma1. HSP70 synthesis and the activation of extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal protein kinase (JNK) increased equally following heat treatment in both cell lines. However, heat-induced protein kinase C (PKC) activation was dramatically reduced in Plcg1 null MEF compared with wt MEF. Importantly, the mitochondrial localization of PKCalpha, PKC-dependent phosphorylation of Bcl-2, and cell viability in Plcg1 null MEF following heat treatment, were significantly decreased compared with the wild type. Furthermore, pretreatment with bryostatin-1, a PKC activator, enhanced Bcl-2 phosphorylation and cellular resistance to heat-induced apoptosis in Plcg1 null MEF. Taken together, these results suggest that PLC-gamma1 activation enhances cell survival through the PKC-dependent phosphorylation of Bcl-2 during the cellular response to heat stress.  相似文献   

9.
We previously showed in rat renal glomerular mesangial cells, that arginine vasopressin (AVP)-stimulated cell proliferation was mediated by epidermal growth factor receptor (EGF-R) transactivation, and activation (phosphorylation) of ERK1/2 and p70S6 kinase (Ghosh et al. [2001]: Am J Physiol Renal Physiol 280:F972-F979]. In this paper, we extend these observations and show that different protein kinase C (PKC) isoforms play different roles in mediating AVP-stimulated ERK1/2 and p70S6 kinase phosphorylation and cell proliferation. AVP treatment for 0-60 min stimulated the serine/threonine phosphorylation of PKC isoforms alpha, delta, epsilon, and zeta. The activation of PKC was dependent on EGF-R and phosphatidylinositol 3-kinase (PI3K) activation. In addition, inhibition of conventional and novel PKC isoforms by chronic (24 h) exposure to phorbol 12-myristate 13-acetate (PMA) inhibited AVP-induced activation of ERK and p70S6 kinase as well as EGF-R phosphorylation. Rottlerin, a specific inhibitor of PKCdelta, inhibited both ERK and p70S6 kinase phosphorylation and cell proliferation. In contrast, a PKCepsilon translocation inhibitor decreased ERK1/2 activation without affecting p70S6 kinase or cell proliferation, while a dominant negative PKCzeta (K281W) cDNA delayed p70S6 kinase activation without affecting ERK1/2. On the other hand, G?6976, an inhibitor of conventional PKC isoforms, did not affect p70S6 kinase, but stimulated ERK1/2 phosphorylation without affecting cell proliferation. Our results indicate that PKCdelta plays an important role in AVP-stimulated ERK and p70S6 kinase activation and cell proliferation.  相似文献   

10.
Stefin B (cystatin B) is an inhibitor of lysosomal cysteine cathepsins and does not inhibit cathepsin D, E (aspartic) or cathepsin G (serine) proteinases. In this study, we have investigated apoptosis triggered by camptothecin, staurosporin (STS), and anti-CD95 monoclonal antibody in the thymocytes from the stefin B-deficient mice and wild-type mice. We have observed increased sensibility to STS-induced apoptosis in the thymocytes of stefin B-deficient mice. Pretreatment of cells with pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone completely inhibited phosphatidylserine externalization and caspase activation, while treatment with inhibitor of calpains- and papain-like cathepsins (2S,3S)-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation nor phosphatidylserine exposure. We conclude that sensitization to apoptosis induced by STS in thymocytes of stefin B-deficient and wild-type mice is not dependent on cathepsin inhibition by stefin B.  相似文献   

11.
We demonstrated a protein kinase C (PKC)-dependent phosphorylation of canine ezrin/radixin/moesin (ERM)-binding phosphoprotein 50 (EBP50) at serine 347/348 by site-directed mutagenesis and a phospho-specific antibody. Cell fractionation and confocal imaging revealed the relocation of EBP50 from the plasma membrane to cytosol that accompanied this phosphorylation event. Increased phosphorylation at these serine residues led to the dissociation of EBP50 from ezrin and β-PIX, which are two upstream regulators of Rac1 activation. Cells overexpressing an EBP50 mutant, mimicking serine 347/348 phosphorylation, became refractory to hepatocyte growth factor-induced cell spreading and scattering, which is normally mediated by Rac1 activation. Detachment of cells from the substratum also elicited an increase in EBP50 phosphorylation, apparently due to counteracting activities of PKC and protein phosphastase 2A, which resulted in decreased Rac1 activation and induction of anoikis. Cells overexpressing an EBP50 mutant defective in serine 347/348 phosphorylation did not undergo apoptosis in suspension culture. These studies reveal a signaling cascade in which different phosphorylation states and subcellular localization of EBP50 regulate Rac1 function.  相似文献   

12.
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.  相似文献   

13.
Phosphorylation of Bcl2 at serine 70 is required for its potent anti-apoptotic function. We have recently shown that Bcl2 phosphorylation is a dynamic process that involves the protein kinase C alpha and protein phosphatase 2A (PP2A) (Ruvolo, P. P., Deng, X., Carr, B. K., and May, W. S. (1998) J. Biol. Chem. 273, 25436-25442; and Deng, X., Ito, T., Carr, B. K., Mumby, M. C., and May, W. S. (1998) J. Biol. Chem. 273, 34157-34163). The potent apoptotic agent ceramide can activate a PP2A, suggesting that one potential component of the ceramide-induced death signal may involve the inactivation of Bcl2. Results indicate that C2-ceramide but not inactive C2-dihydroceramide, was found to specifically activate a mitochondrial PP2A, which rapidly and completely induced Bcl2 dephosphorylation and correlated closely with ceramide-induced cell death. Using a genetic approach, the gain-of-function S70E Bcl2 mutation, which mimics phosphorylation, fails to undergo apoptosis even with the addition of high doses of ceramide (IC50 > 50 microM). In contrast, cells overexpressing exogenous wild-type Bcl2 were sensitive to ceramide at dosages where PP2A is fully active and Bcl2 would be expected to be dephosphorylated (IC50 = 14 microM). These findings indicate that in cells expressing functional Bcl2, the mechanism of death action for ceramide may involve, at least in part, a mitochondrial PP2A that dephosphorylates and inactivates Bcl2.  相似文献   

14.
The impact of ectopic expression of an N-terminal phosphorylation loop deletant Bcl-2 protein (Bcl-2Delta32-80) on the response of U937 monoblastic leukemia cells to paclitaxel was examined. In contrast to recent findings in HL-60 cells (Fang et al., Cancer Res. 58, 3202, 1998), U937 cells overexpressing Bcl-2Delta32-80 were significantly more resistant than those overexpressing full-length protein to caspase-3 and -9 activation, PARP degradation, and apoptosis induced by paclitaxel (500 nM; 18 h). Bcl-2Delta32-80 was also more effective than its full-length counterpart in opposing paclitaxel-mediated mitochondrial dysfunction, e.g., loss of mitochondrial membrane potential (Deltapsim) and cytochrome c release into the cytoplasm. Enhanced resistance of U937/Bcl-2Delta32-80 cells to paclitaxel was observed primarily in the G2M population. Together, these findings demonstrate that deletion of the Bcl-2 phosphorylation loop domain increases resistance of U937 leukemia cells to paclitaxel-mediated mitochondrial damage and apoptosis and suggest that factors other than, or in addition to, phosphorylation contribute to Bcl-2-related cytoprotectivity against paclitaxel in this model system.  相似文献   

15.
Mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein beta (PI-TPbeta, SPIbeta cells) demonstrate a low rate of proliferation and a high sensitivity towards UV-induced apoptosis when compared with wtNIH3T3 cells. In contrast, SPIbetaS262A cells overexpressing a mutant PI-TPbeta that lacks the protein kinase C-dependent phosphorylation site Ser-262, demonstrate a phenotype comparable with wtNIH3T3 cells. This suggests that the phosphorylation of Ser-262 in PI-TPbeta is involved in the regulation of apoptosis. Conditioned medium (CM) from wtNIH3T3 cells contains bioactive factors, presumably arachidonic acid metabolites [H. Bunte, et al., 2006; M. Schenning, et al., 2004] that are able to protect SPIbeta cells against UV-induced apoptosis. CM from SPIbeta cells lacks this protective activity. However, after heat denaturation CM from SPIbeta cells regains a protective activity comparable with that of wtNIH3T3 cells. This indicates that CM from SPIbeta cells contains an antagonistic factor interfering with the anti-apoptotic activity present. SPIbetaS262A cells do not produce the antagonist suggesting that phosphorylation of Ser-262 is required. Moreover, in line with the apparent lack of anti-apoptotic activity, CM from SPIbeta cells does not induce the expression of COX-2 or the activation of p42/p44 MAP kinase in SPIbeta cells. In contrast, CM from wtNIH3T3 and SPIbetaS262A cells or heat-treated CM from SPIbeta cells does induce these anti-apoptotic markers. Since we have previously shown that some of the arachidonic acid metabolites present in CM from wtNIH3T3 cells are prostaglandin (PG) E(2) and PGF(2alpha), we investigated the effect of these PGs on cell survival. Although PGE(2) and PGF(2alpha) were found to protect wtNIH3T3 and SPIbetaS262A cells against UV-induced apoptosis, these PGs failed to rescue SPIbeta cells. The fact that the concentrations of PGE(2) and PGF(2alpha) in the CM from SPIbeta cells and wtNIH3T3 cells were found to be comparable suggests that the failure of these PGs to protect SPIbeta cells could render these cells more apoptosis sensitive. Concomitantly, upon incubation with PGE(2) and PGF(2alpha), an increased expression of COX-2 and activation of p42/p44 MAP kinase were observed in wtNIH3T3 and SPIbetaS262A cells but not in SPIbeta cells. Hence, it appears that specific mechanisms of cell survival are impaired in SPIbeta cells.  相似文献   

16.
We have previously reported that pretreatment of HL-60 human promyelocytic leukemia cells with the non-tumor-promoting protein kinase C (PKC) activator bryostatin 1 potentiates induction of apoptosis by the antimetabolite 1-[beta-D-arabinofuranosyl]cytosine (ara-C) (Biochem Pharmacol 47:839,1994). To determine whether this phenomenon results from altered expression of Bcl-2 or related proteins, Northern and Western analysis was employed to assess the effects of bryostatin 1 and other PKC activators on steady-state levels of Bcl-2, Bax, Bcl-x, and Mcl-1 mRNA and protein. Pretreatment of cells for 24 h with 10 nM bryostatin 1, or, to a lesser extent, the stage-1 tumor-promoter phorbol dibutyrate (PDB) significantly potentiated apoptosis induced by ara-C (100 microM; 6 h); in contrast, equivalent exposure to the stage-2 tumor promoter, mezerein (MZN), which, unlike bryostatin 1, is a potent inducer of differentiation in this cell line, failed to modify ara-C-related cell death. Neither bryostatin 1 nor PDB altered expression of bcl-2/Bcl-2 over this time frame. In contrast, MZN down-regulated bcl-2 mRNA levels, but this effect was not accompanied by altered expression of Bcl-2 protein. None of the PKC activators modified expression of Bax or Bcl-x(L) mRNA or protein; levels of Bcl-x(S) were undetectable in both treated and untreated cells. However, expression of Mcl-1 mRNA and protein increased modestly after treatment with either bryostatin 1 or PDB, and to a greater extent following exposure to MZN. Combined treatment of cells with bryostatin 1 and MZN resulted in undiminished potentiation of ara-C-mediated apoptosis and by antagonism of cellular maturation. These effects were accompanied by unaltered expression of Bcl-2, Bax, and Bcl-x(L), and by a further increase in Mcl-1 protein levels. When cells were co-incubated with bryostatin 1 and calcium ionophore (A23187), an identical pattern of expression of Bcl-2 family members was observed, despite the loss of bryostatin 1's capacity to potentiate apoptosis, and the restoration of its ability to induce differentiation. Finally, treatment of cells with bryostatin 1+/-ara-C (but not ara-C alone) resulted in a diffuse broadening of the Bcl-2 protein band, whereas exposure of cells to taxol (250 nM, 6 h) led to the appearance of a distinct Bcl-2 species with reduced mobility, phenomena compatible with protein phosphorylation. Together, these findings indicate that the ability of bryostatin 1 to facilitate drug-induced apoptosis in human myeloid leukemia cells involves factors other than quantitative changes in the expression of Bcl-2 family members, and raise the possibility that qualitative alterations in the Bcl-2 protein, such as phosphorylation status, may contribute to this capacity. They also suggest that increased expression of Mcl-1 occurs early in the pre-commitment stage of myeloid cell differentiation, and that this event does not protect cells from drug-induced apoptosis.  相似文献   

17.
In the present study, we found that baicalein (BE), but not its glycoside baicalin (BI), induced apoptosis in human leukemia HL-60 and Jurkat cells, but not in primary murine peritoneal macrophages (PMs) or human polymorphonuclear (PMN) cells, by the MTT assay, LDH release assay, and flow cytometric analysis. Activation of the caspase 3, but not caspase 1, enzyme via inducing protein processing was detected in BE-induced apoptosis. The ROS-scavenging activity of BE was identified by the anti-DPPH radical, DCHF-DA, and in vitro plasmid digestion assay, and none of chemical antioxidants including allpurinol (ALL), N-acetyl-cystein (NAC), and diphenylene iodonium (DPI) affected BE-induced apoptosis in HL-60 cells. This suggests that apoptosis induced by BE is independent of the production of ROS in HL-60 cells. Interestingly, the apoptotic events such as DNA ladders formation and activation of the caspase 3 cascade were significantly blocked by TPA addition in the presence of membrane translocation of PKCα, and TPA-induced protection was reduced by adding the PKC inhibitors, GF-109203X and staurosporin. TPA addition induces the phosphorylation of JNKs and ERKs, but not p38, protein in HL-60 cells, and incubation of HL-60 cells with JNKs inhibitor SP600125, but not ERKs inhibitor, PD98059 or the p38 inhibitor SB203580, suppressed the protective effect of TPA against BE-induced apoptotic events including DNA ladders, apoptotic bodies, caspase 3 and D4-GDI protein cleavage in according with blocking JNKs protein phosphorylation. In addition, PKC inhibitor GF-109203X treatment blocks TPA-induced ERKs and JNKs protein phosphorylation, which indicates that activation of PKC locates at upstream of MAPKs activation in TPA-treated HL-60 cells. Additionally, a loss in mitochondrial membrane potential with a reduction in Bcl-2 protein expression, the induction of Bad protein phosphorylation, and translocation of cytochrome c from mitochondria to the cytosol were observed in BE-treated HL-60 cells, and these events were prevented by the addition of TPA. GF-109203X and SP600125 suppression of TPA against cytochrome c release induced by BE was identified. This suggests that activation of PKC and JNKs participate in TPA's prevention of BE-induced apoptosis via suppressing mitochondrial dysfunction in HL-60 cells.  相似文献   

18.
This study investigates apoptotic effects of protein kinase C (PKC) delta and theta in neuroblastoma cells. 12-O-tetradecanoylphorbol-13-acetate induces apoptosis in SK-N-BE(2) neuroblastoma cells overexpressing PKCdelta or PKCtheta, but not PKC epsilon. The PKC inhibitor GF109203X does not suppress this apoptotic effect, suggesting that it is independent of the catalytic activity of PKC. The isolated catalytic domains of PKCdelta and PKCtheta or the regulatory domain (RD) of PKCtheta also induce apoptosis in neuroblastoma cells. The apoptotic responses are suppressed by caspase inhibition and by Bcl-2 overexpression. The PKCtheta RD induced apoptosis also in Jurkat cells. Colocalisation analysis revealed that the PKCtheta RD primarily localises to the Golgi complex. The C1b domain is required for this localisation and removal of the C1b domain results in a PKCtheta construct that does not induce apoptosis. This suggests that the PKCtheta RD has apoptotic activity and that Golgi localisation may be important for this effect.  相似文献   

19.
To investigate the exact biochemical functions by which Bcl-2 regulates apoptosis, we established a stable human small cell lung carcinoma cell line, Ms-1, overexpressing wild-type human Bcl-2 or various deletion and point mutants thereof, and examined the effect of these Bcl-2 mutants on apoptosis induced by antitumor drugs such as camptothecin. Cytochrome c release, caspase-3-(-like) protease activation, and apoptosis induced by antitumor drugs were accelerated by overexpression of Bcl-2 lacking a Bcl-2 homology (BH) 1 domain (Bcl-2/ DeltaBH1), but not by that of BH2, BH3, or BH4 domain-deleted Bcl-2. A similar result was obtained upon the substitution of glycine 145 with alanine in the BH1 domain (Bcl-2/G145A), which failed to interact with either Bax or Bak. Pro-apoptotic Bax and Bak have been known to be activated in response to antitumor drugs, and Bcl-2/G145A as well as Bcl-2/DeltaBH1 also accelerated Bax- or Bak-induced apoptosis in HEK293T cells. These two mutants still retained the ability to interact with wild-type Bcl-2 and Bcl-xL, and abrogated the inhibitory effect of wild-type Bcl-2 or Bcl-xL on Bax- or Bak-induced apoptosis. In addition, immunoprecipitation studies revealed that Bcl-2/DeltaBH1 and Bcl-2/G145A interrupted the association between wild-type Bcl-2 and Bax/Bak. Taken together, our results demonstrate that Bcl-2/DeltaBH1 or Bcl-2/G145A acts as a dominant negative of endogenous anti-apoptotic proteins such as Bcl-2 and Bcl-xL, thereby enhancing antitumor drug-induced apoptosis, and that this dominant negative activity requires both a failure of interaction with Bax and Bak through the BH1 domain of Bcl-2 and retention of the ability to interact with Bcl-2 and Bcl-xL.  相似文献   

20.
Mitochondria-targeted human 8-oxoguanine DNA glycosylase (mt-hOgg1) and aconitase-2 (Aco-2) each reduce oxidant-induced alveolar epithelial cell (AEC) apoptosis, but it is unclear whether protection occurs by preventing AEC mitochondrial DNA (mtDNA) damage. Using quantitative PCR-based measurements of mitochondrial and nuclear DNA damage, mtDNA damage was preferentially noted in AEC after exposure to oxidative stress (e.g. amosite asbestos (5–25 μg/cm2) or H2O2 (100–250 μm)) for 24 h. Overexpression of wild-type mt-hOgg1 or mt-long α/β 317–323 hOgg1 mutant incapable of DNA repair (mt-hOgg1-Mut) each blocked A549 cell oxidant-induced mtDNA damage, mitochondrial p53 translocation, and intrinsic apoptosis as assessed by DNA fragmentation and cleaved caspase-9. In contrast, compared with controls, knockdown of Ogg1 (using Ogg1 shRNA in A549 cells or primary alveolar type 2 cells from ogg1−/− mice) augmented mtDNA lesions and intrinsic apoptosis at base line, and these effects were increased further after exposure to oxidative stress. Notably, overexpression of Aco-2 reduced oxidant-induced mtDNA lesions, mitochondrial p53 translocation, and apoptosis, whereas siRNA for Aco-2 (siAco-2) enhanced mtDNA damage, mitochondrial p53 translocation, and apoptosis. Finally, siAco-2 attenuated the protective effects of mt-hOgg1-Mut but not wild-type mt-hOgg1 against oxidant-induced mtDNA damage and apoptosis. Collectively, these data demonstrate a novel role for mt-hOgg1 and Aco-2 in preserving AEC mtDNA integrity, thereby preventing oxidant-induced mitochondrial dysfunction, p53 mitochondrial translocation, and intrinsic apoptosis. Furthermore, mt-hOgg1 chaperoning of Aco-2 in preventing oxidant-mediated mtDNA damage and apoptosis may afford an innovative target for the molecular events underlying oxidant-induced toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号