首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The opd gene, encoding organophosphorus hydrolase (OPH) from Flavobacterium sp. capable of degrading a wide range of organophosphate pesticides, was surface- and intracellular-expressed in Synechococcus PCC7942, a prime example of photoautotrophic cyanobacteria. OPH was displayed on the cyanobacterial cell surface using the truncated ice nucleation protein as an anchoring motif. A minor fraction of OPH was displayed onto the outermost surface of cyanobacterial cells, as verified by immunostaining visualized under confocal laser scanning microscopy and OPH activity analysis; however, a substantial fraction of OPH was buried in the cell wall, as demonstrated by proteinase K and lysozyme treatments. The cyanobacterial outer membrane acts as a substrate (paraoxon) diffusion barrier affecting whole-cell biodegradation efficiency. After freeze-thaw treatment, permeabilized whole cells with intracellular-expressed OPH exhibited 14-fold higher bioconversion efficiency (Vmax/Km) than that of cells with surface-expressed OPH. As cyanobacteria have simple growth requirements and are inexpensive to maintain, expression of OPH in cyanobacteria may lead to the development of a lowcost and low-maintenance biocatalyst that is useful for detoxification of organophosphate pesticides.  相似文献   

2.
Biosensors for direct determination of organophosphate pesticides   总被引:7,自引:0,他引:7  
Direct, selective, rapid and simple determination of organophosphate pesticides has been achieved by integrating organophosphorus hydrolase with electrochemical and opitical transducers. Organophosphorus hydrolase catalyzes the hydrolysis of a wide range of organophosphate compounds, releasing an acid and an alcohol that can be detected directly. This article reviews development, characterization and applications of organophosphorus hydrolase-based potentiometric, amperometric and optical biosensors.  相似文献   

3.
Although Escherichia coli can be genetically engineered to degrade environmental toxic organophosphate compounds (OPs) to nontoxic materials, a critical problem in such whole cell systems is limited substrate diffusion. The present work examined whether periplasmic expression of organophosphorus hydrolase (OPH) resulted in better whole cell enzymatic activity compared to standard cytosolic expression. Recombinant OPH periplasmic expression was achieved using the general secretory (sec) pathway with the pelB signal sequence. We found that while total OPH activity in periplasmic-expressing cell lysates was lower compared to that in cytosolic-expressing cell lysates whole cell OPH activity was 1.8-fold greater at 12 h post-induction in the periplasmic-expressing cells as a result of OPH translocation into the periplasmic space ( approximately 67% of whole cell OPH activity was found in the periplasmic fraction). These data suggest that E. coli engineered to periplasmically secrete OPH via the sec pathway may provide an improved whole cell biodegradation system for destruction of environmental toxic OPs.  相似文献   

4.
A genetically engineered microorganism (GEM) capable of simultaneously degrading organophosphate and organochlorine pesticides was constructed for the first time by display of organophosphorus hydrolase (OPH) on the cell surface of a hexachlorocyclohexane (HCH)-degrading Sphingobium japonicum UT26. The GEM could potentially be used for removing the two classes of pesticides that may be present in mixtures at contaminated sites. A surface anchor system derived from the truncated ice nucleation protein (INPNC) from Pseudomonas syringae was used to target OPH onto the cell surface of UT26, reducing the potential substrate uptake limitation. The surface localization of INPNC–OPH fusion was verified by cell fractionation, western blot, proteinase accessibility, and immunofluorescence microscopy. Furthermore, the functionality of the surface-exposed OPH was demonstrated by OPH activity assays. Surface display of INPNC–OPH fusion (82 kDa) neither inhibited cell growth nor affected cell viability. The engineered UT26 could degrade parathion as well as γ-HCH rapidly in minimal salt medium. The removal of parathion and γ-HCH by engineered UT26 in sterile and non-sterile soil was also studied. In both soil samples, a mixture of parathion (100 mg kg?1) and γ-HCH (10 mg kg?1) could be degraded completely within 15 days. Soil treatment results indicated that the engineered UT26 is a promising multifunctional bacterium that could be used for the bioremediation of multiple pesticide-contaminated environments.  相似文献   

5.
An amperometric microbial biosensor for highly specific, sensitive and rapid quantitative determination of p-nitrophenol was developed. The biosensor takes advantage of the ability of Moraxella sp. to specifically degrade p-nitrophenol to hydroquinone, a more electroactive compound than p-nitrophenol. The electrochemical oxidation current of hydroquinone formed in biodegradation of p-nitrophenol was measured at Moraxella sp.-modified carbon paste electrode and correlated to p-phenol concentrations. The optimum response was realized by electrode constructed using 15 mg of dry cell weight per 1 g of carbon paste and operating at 0.3 V (versus Ag/AgCl reference) in pH 7.5, 20 mM sodium phosphate buffer. Operating at these optimum conditions the biosensor had excellent selectivity against phenol derivatives and was able to measure as low as 20 nM (2.78 ppb) p-nitrophenol with very good accuracy and reproducibility. The biosensor was stable for approximately 3 weeks when stored at 4 degrees C. The applicability of the biosensor to measure p-nitrophenol in lake water was demonstrated.  相似文献   

6.
Aims: The bacterial organophosphorus hydrolase (OPH) enzyme hydrolyses and detoxifies a broad range of toxic organophosphate pesticides and warfare nerve agents by cleaving the various phosphorus‐ester bonds (P–O, P–F, P–CN, P–S); however, OPH hydrolyses these bonds with varying efficiencies. The aim of this study was to generate a variant OPH enzyme with improved hydrolytic efficiency against the poorly hydrolysed P–S class of organophosphates. Methods and Results: The gene encoding OPH was sequentially mutated at specific codons by saturation mutagenesis and screened for improved activity against the P–S substrates demeton‐S methyl and malathion. Escherichia coli lysates harbouring the variants displayed up to 177‐ and 1800‐fold improvement in specific activity against demeton‐S methyl and malathion, respectively, compared to the wild‐type lysates. The specificity constants of the purified variant proteins were improved up to 25‐fold for demeton‐S methyl and malathion compared to the wild‐type. Activity was associated with organophosphate detoxification as the hydrolysed substrate lost the ability to inhibit acetylcholinesterase. The improved hydrolytic efficiency against demeton‐S translated to the improved ability to hydrolyse the warfare agent VX. Conclusions: OPH variant enzymes were generated that displayed significantly improved ability to hydrolyse and detoxify organophosphates harbouring the P–S bond. Significance and Impact of the Study: The long‐term goal is to generate an environmentally‐friendly enzyme‐mediated bioremediation approach for the removal of toxic organophosphate compounds in the environment.  相似文献   

7.
Organophosphorus hydrolase (OPH) is a bacterial enzyme that has been shown to degrade a wide range of neurotoxic organophosphate nerve agents. However, the effectiveness of degradation varies dramatically, ranging from highly efficient with paraoxon to relatively slow with methyl parathion. Sequential cycles of DNA shuffling and screening were used to fine-tune and enhance the activity of OPH towards poorly degraded substrates. Because of the inaccessibility of these pesticides across the cell membrane, OPH variants were displayed on the surface of Escherichia coli using the truncated ice nucleation protein in order to isolate novel enzymes with truly improved substrate specificities. A solid-phase top agar method based on the detection of the yellow product p-nitrophenol was developed for the rapid prescreening of potential variants with improved hydrolysis of methyl parathion. Two rounds of DNA shuffling and screening were carried out, and several improved variants were isolated. One variant in particular, 22A11, hydrolyzes methyl parathion 25-fold faster than does the wild type. Because of the success that we achieved with directed evolution of OPH for improved hydrolysis of methyl parathion, we believe that we can easily extend this method in creating other OPH variants with improved activity against poorly degraded pesticides such as diazinon and chlorpyrifos and nerve agents such as sarin and soman.  相似文献   

8.
Neurotoxic organophosphates (OPs) are widely used as pesticides and for public health purposes, as well as being nerve gases. As a result of the widespread use of these compounds for agriculture, large volumes of wastewater are generated. Additionally, there are large stockpiles of the nerve gases soman, sarin and VX in the United States and elsewhere around the world. Organophosphorus hydrolase (OPH) is an enzyme that catalyzes the hydrolysis of OP nerve agents. To date, however, the use of this enzyme in detoxification processes has been rather limited due to the high cost of its purification and short catalytic half-life. This paper reports the development of a cost-effective method for the production and immobilization of OPH in a pilot application in an enzyme bioreactor column for detoxification of paraoxon and coumaphos in contaminated wastewaters. A fusion between OPH and a cellulose binding domain that binds selectively to cellulose was generated to allow one-step purification and immobilization of OPH on cheap and abundantly available cellulose immobilization matrices. When packed in a column bioreactor, the immobilized fusion enzyme was able to completely degrade coumaphos up to a concentration of 0.2 mM. However, stirring of OPH immobilized on cellulose materials resulted in complete OP degradation of 1.5 mM coumaphos. The bioreactor column degraded the compounds tested at high concentration, rapidly, and without loss of process productivity for about 2 months.  相似文献   

9.
Cross-linked enzyme crystals of organophosphate hydrolase (CLEC-OPH) prepared from crude recombinant E. coli cell lysate was used for the development of an electrochemical biosensor for the detection of organophosphate pesticides. CLEC-OPH showed an increased V max of 0.721 U mg protein−1 and a slightly lower K m of 0.083 mM on paraoxon compared to the crude enzyme, resulting in an improved catalytic efficiency (k cat/K m = 4.17 × 105 M−1 min−1) with a remarkable increase on thermostability. An amperometric biosensor was constructed based on glutaraldehyde and albumin cross-linkage of CLEC-OPH with carbon nanotubes. The sensor exhibited greater sensitivity and operational stability with a lower limit of detection when compared with a sensor using an equivalent loading of crude OPH in a non-crystal form. The application of crude enzyme-based CLEC would offer a simple and economical approach for the fabrication of efficient electrochemical biosensors.  相似文献   

10.

Neurotoxic organophosphates (OPs) are widely used as pesticides and for public health purposes, as well as being nerve gases. As a result of the widespread use of these compounds for agriculture, large volumes of wastewater are generated. Additionally, there are large stockpiles of the nerve gases soman, sarin and VX in the United States and elsewhere around the world. Organophosphorus hydrolase (OPH) is an enzyme that catalyzes the hydrolysis of OP nerve agents. To date, however, the use of this enzyme in detoxification processes has been rather limited due to the high cost of its purification and short catalytic half-life. This paper reports the development of a cost-effective method for the production and immobilization of OPH in a pilot application in an enzyme bioreactor column for detoxification of paraoxon and coumaphos in contaminated wastewaters. A fusion between OPH and a cellulose binding domain that binds selectively to cellulose was generated to allow one-step purification and immobilization of OPH on cheap and abundantly available cellulose immobilization matrices. When packed in a column bioreactor, the immobilized fusion enzyme was able to completely degrade coumaphos up to a concentration of 0.2 mM. However, stirring of OPH immobilized on cellulose materials resulted in complete OP degradation of 1.5 mM coumaphos. The bioreactor column degraded the compounds tested at high concentration, rapidly, and without loss of process productivity for about 2 months.

  相似文献   

11.
A new anchor system based on the ice nucleation protein (InaV) from Pseudomonas syringae INA5 was developed for cell surface display of functional organophosphorus hydrolase (OPH). The activity and stability of cells expressing the truncated InaV (INPNC)-OPH fusions were compared to cells with surface-expressed OPH using two other fusion anchors based on Lpp-OmpA and the truncated InaK protein. Whole cell activity was as much as 5-fold higher using the InaV anchor. Majority of the OPH activity was located on the cell surface as determined by protease accessibility and cell fractionation experiments. The surface localization of OPH was further verified by immunofluorescence microscopy. Constitutive expression of OPH on the surface using the InaV anchor resulted in no cell lysis or growth inhibition, in contrast to the Lpp-OmpA anchor. Suspended cultures also exhibited good stability, retaining almost 100% activity over a period of 3 weeks. Therefore, the InaV anchor system offers an attractive alternative to the currently available surface anchors, providing high-level expression and superior stability.  相似文献   

12.
Moraxella sp., a native soil organism that grows on p-nitrophenol (PNP), was genetically engineered for the simultaneous degradation of organophosphorus (OP) pesticides and p-nitrophenol (PNP). The truncated ice nucleation protein (INPNC) anchor was used to target the pesticide-hydrolyzing enzyme, organophosphorus hydrolase (OPH), onto the surface of Moraxella sp., alleviating the potential substrate uptake limitation. A shuttle vector, pPNCO33, coding for INPNC-OPH was constructed and the translocation, surface display, and functionality of OPH were demonstrated in both E. coli and Moraxella sp. However, whole cell activity was 70-fold higher in Moraxella sp. than E. coli. The resulting Moraxella sp. degraded organophosphates as well as PNP rapidly, all within 10 h. The initial hydrolysis rate was 0.6 micromol/h/mg dry weight, 1.5 micromol/h/mg dry weight, and 9.0 micromol/h/mg dry weight for methyl parathion, parathion, and paraoxon, respectively. The possibility of rapidly degrading OP pesticides and their byproducts should open up new opportunities for improved remediation of OP nerve agents in the future.  相似文献   

13.
An improved whole-cell technology for detoxifying organophosphate nerve agents was recently developed based on genetically engineered Escherichia coli with organophosphorus hydrolase anchored on the surface. This article reports the immobilization of these novel biocatalysts on nonwoven polypropylene fabric and their applications in detoxifying contaminated wastewaters. The best cell loading (256 mg cell dry weight/g of support or 50 mg cell dry weight/cm2 of support) and subsequent hydrolysis of organophosphate nerve agents were achieved by immobilizing nongrowing cells in a pH 8, 150 mM citrate-phosphate buffer supplemented with 1 mM Co2+ for 48 h via simple adsorption, followed by organophosphate hydrolysis in a pH 8, 50 mM citrate-phosphate buffer supplemented with 0.05 mM Co2+ and 20% methanol at 37 degrees C. In batch operations, the immobilized cells degraded 100% of 0.8 mM paraoxon, a model organophosphate nerve agent, in approximately 100 min, at a specific rate of 0.160 mM min-1 (g cell dry wt)-1. The immobilized cells retained almost 100% activity during the initial six repeated cycles and close to 90% activity even after 12 repeated cycles, extending over a period of 19 days without any nutrient supplementation. In addition to paraoxon, other commonly used organophosphates, such as diazinon, coumaphos, and methylparathion were hydrolyzed efficiently. The cell immobilization technology developed here paves the way for an efficient, simple, and cost-effective method for detoxification of organophosphate nerve agents.  相似文献   

14.
Organophosphate pesticides present serious risks to human and environmental health. A rapid reliable, economical and portable analytical system will be of great benefit in the detection and prevention of contamination. A biosensor array based on six acetylcholinesterase enzymes for use in a novel automated instrument incorporating a neural network program is described. Electrochemical analysis was carried out using chronoamperometry and the measurement was taken 10s after applying a potential of 0 V vs. Ag/AgCl. The total analysis time for the complete assay was less than 6 min. The array was used to produce calibration data with six organophosphate pesticides (OPs) in the concentration range of 10(-5) M to 10(-9) M to train a neural network. The output of the neural network was subsequently evaluated using different sample matrices. There were no detrimental matrix effects observed from water, phosphate buffer, food or vegetable extracts. Furthermore, the sensor system was not detrimentally affected by the contents of water samples taken from each stage of the water treatment process. The biosensor system successfully identified and quantified all samples where an OP was present in water, food and vegetable extracts containing different OPs. There were no false positives or false negatives observed during the evaluation of the analytical system. The biosensor arrays and automated instrument were evaluated in situ in field experiments where the instrument was successfully applied to the analysis of a range of environmental samples. It is envisaged that the analytical system could provide a rapid detection system for the early warning of contamination in water and food.  相似文献   

15.
In this study, amperometric biosensors based on rigid conducting composites are developed for the determination of lysine. These lysine biosensors consist of chemically immobilized lysine oxidase membranes attached to either graphite-methacrylate or peroxidase-modified graphite-methacrylate electrodes. The enzymatic degradation of lysine releases hydrogen peroxide, which is the basis of the amperometric detection. The direct oxidation of hydrogen peroxide is monitored at +1000 mV with a graphite-methacrylate electrode, while with the peroxidase-modified electrode reductive detection is performed. In addition, for the peroxidase-modified biocomposite electrode, both direct electron transfer and hydroquinone-mediated detection are studied. For the lysine biosensor based on the hydroquinone-mediated peroxidase biocomposite, the linear range is up to 1.6 x 10(-4) M, the sensitivity 11300 microA/M, the repeatability 1.8%, the detection limit 8.2 x 10(-7) M and the response time t95% is 42 s. The proposed biosensors are used to determine lysine in pharmaceutical samples. Results are consistent with those obtained with the standard method.  相似文献   

16.
Summary By using a commercially available surface plasmon resonance (SPR) biosensor, the values of the association rate constant (kass), dissociation rate constant (kdiss), and association constant (KA = kass / kdiss) for binding to the antigens were determined. They were almost the same for the recombinant antibody expressed in COS cells, CHO cells, and mouse hybridoma cells. The system of transient expression of the recombinant antibody (Ab) in COS cells and SPR analysis of the supernatant should be useful for rapid expression and evaluation of the binding ability of large numbers of engineered Abs.  相似文献   

17.
A significantly improved, recombinant Escherichia coli has been developed to degrade the toxic organophosphorus compound, Paraoxon, to non-toxic materials by co-expression of organophosphorus hydrolase (OPH) under trc promoter and Vitreoscilla hemoglobin (VHb) under O2dependent nar promoter. VHb-expressing whole cells had significant enhancement of OPH activity (48%, 18.7 vs. 27.8 unit l–1) and bioconversion efficiency V max/K m (44%, 0.14 vs. 0.2 min–1) compared to VHb-free system.  相似文献   

18.
In this study, we developed a safe and sensitive method for the simultaneous determination of urinary dialkylphosphates (DAPs), metabolites of organophosphorus insecticides (OPs), including dimethylphosphate (DMP), diethylphosphate (DEP), dimethylthiophosphate (DMTP), and diethylthiophosphate (DETP), using a pentafluorobenzylbromide (PFBBr) derivatization and gas chromatography-mass spectrometry (GC-MS). Several parameters were investigated: pH on evaporation, reaction temperature and time for the derivatization, the use of an antioxidant for preventing oxidation, and a clean-up step. The pH was set at 6, adjusted with K2CO3, and the reaction temperature and time of derivatization were 80 degrees C and 30 min, respectively. Sodium disulfite was chosen as an antioxidant. The clean-up step was performed with a Florisil/PSE mini-column to remove the unreacted PFBBr and sample matrix. This established procedure markedly shortened the sample preparation time to only about 3 h, and completely inhibited the unwanted oxidization of dialkylthiophosphates. The limits of determination (LOD) were approximately 0.3 microg/L for DMP, and 0.1 microg/L for DEP, DMTP, and DETP in 5 mL of human urine. Within-series and between-day imprecision for the present method using pooled urine spiked with DAPs was less than 20.6% in the calibration range of 1-300 microg/L, and the mean recovery was 56.7-60.5% for DMP, 78.5-82.7% for DEP, 88.3-103.9% for DMTP, and 84.2-92.4% for DETP. This method detected geometric mean values of the urinary DAPs in Japanese with and without occupational exposure to OPs, 16.6 or 27.4 for DMP, 1.0 or 0.7 for DEP, 1.3 or 2.3 for DMTP, and 1.0 or 1.1 microg/L for DETP, respectively. The present method, which does not require special equipment except for GC-MS, is quick, safe, and sensitive enough to be adopted in routine biological monitoring of non-occupational as well as occupational exposure to OPs.  相似文献   

19.
A simple, rapid and sensitive colorimetric dipstick assay for the detection of the organophosphorous insecticide methyl parathion (MPT) residue in vegetables was developed. The assay was based on the hydrolysis of MPT by a recombinant methyl parathion hydrolase (recMPH), the encoding gene of which was isolated from Burkholderia cepacia, a soil bacterium indigenous to Thailand. This reaction generates protons leading to a change in pH that correlates with the amount of MPH present. Hence, the pH indicator bromothymol blue was used to monitor the MPH hydrolysis as the associated color changes can be observed by the naked eye. The recMPH was immobilized on a PVDF membrane to establish a dipstick assay format. The assays could detect MPT residues in spiked vegetable samples at the concentration of 1 mg/L without using analytical instrumentation. The test is reusable and stable for up to 3 months in the absence of any preservatives.  相似文献   

20.
A potentiometric enzyme electrode for the direct measurement of organophosphate (OP) nerve agents was developed. The basic element of this enzyme electrode was a pH electrode modified with an immobilized organophosphorus hydrolase (OPH) layer formed by cross-linking OPH with bovine serum albumin (BSA) and glutaradehyde. OPH catalyses the hydrolysis of organophosphorus pesticides to release protons, the concentration of which is proportional to the amount of hydrolysed substrate. The sensor signal and response time was optimized with respect to the buffer pH, ionic concentration of buffer, temperature, and units of OPH immobilized using paraoxon as substrate. The best sensitivity and response time were obtained using a sensor constructed with 500 IU of OPH and operating in pH 8.5, 1 mM HEPES buffer. Using these conditions, the biosensor was used to measure as low as 2 microM of paraoxon, ethyl parathion, methyl parathion and diazinon. The biosensor was completely stable for at least one month when stored in pH 8.5, 1 mM HEPES + 100 mM NaCl buffer at 4 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号