首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allelopathy of filamentous green algae (FGA) has been less studied than that of macrophytes. Little Budworth Pool, Cheshire, UK is a small, shallow, clear-water lake with high TP concentrations, very high NO3-N concentrations, only moderate phytoplankton density, high FGA growth (mainly Spirogyra sp.) and no submerged plants. Experiments were carried out to test the possible allelopathic effects of Spirogyra on the phytoplankton of this lake and on a submerged plant Elodea nuttallii. Changes in phytoplankton growth, phytoplankton species dynamics and species composition were apparently not influenced by allelopathy of live or decaying Spirogyra. A shift from diatom (Cyclotella sp) – cryptomonad (Chroomonas acuta and Cryptomonas erosa) dominance to Chlorococcales (Micractinium pusillum, Monoraphidium contortum and Scenedesmus opoliensis) – Volvocales (Chlorogonium elongatum and Pandorina morum) dominance was recorded in both control and FGA treatments, suggesting an effect of nutrient enrichment. Nutrient concentrations and differences in competitiveness among phytoplankton species can also explain differences in their growth rates in Spirogyra filtrate. Spirogyra also did not influence apex number per plant, shoot length or growth rate of E. nuttallii. This FGA species probably cannot control phytoplankton or E. nuttallii growth in nutrient rich conditions through allelopathy.  相似文献   

2.
Species identification of the common filamentous green alga Spirogyra is mainly based on the conjugation process and zygospores. However, this genus is mostly found in its vegetative stage, which complicates studies on the ecological demands for individual species. We therefore used a different approach by assessing the relationship between vegetative Spirogyra filament type groups (morphotypes) and environmental conditions (mainly ions, nutrients, light supply and water temperature). Sampling was done at 133 sites in Central Europe and in total 333 different filament types were classified. Spirogyra was found at pH values between 6.2 and 9.1, while total alkalinity ranged from 0.6 to 7.9 mequiv l−1. The genus is colonizing habitats with a specific conductivity between 75 and 1500 μS cm−1. Total phosphorus amounts varied between 1 and 2240 μg l−1 with a median value of 34 μg l−1, indicating meso- to eutrophic conditions as optimal growth range. Filament type grouping by means of cluster analysis was based on cell cross walls (plane or replicate), average cell widths and average chloroplast numbers and resulted in 10 groups with plane cross walls and three with replicate cross walls. Canonical correspondence analysis revealed nutrients to be the key factor for morphotype occurrence: filaments with increased cell widths preferred elevated nutrient conditions. Other environmental variables (ions, buffer capacity, light supply and water temperature) had no significant effects on morphotype occurrence.  相似文献   

3.
A blue light– (peak at 470 nm) induced photomovement was observed in the filamentous eukaryotic algae, Spirogyra spp. When Spirogyra filaments were scattered in a water chamber under a unilateral light source, they rapidly aligned toward the light source in 1 h and bound with neighboring filaments to form thicker parallel bundles of filaments. The filaments in the anterior of the bundles curved toward the light first and then those in the posterior began to roll up toward the light, forming an open‐hoop shape. The bundle of filaments then moved toward the light source by repeated rolling and stretching of filaments. When the moving bundle met other filaments, they joined and formed a bigger mat. The coordination of filaments was essential for the photomovement. The average speed of movement ranged between 7.8 and 13.2 μm·s?1. The movement was induced in irradiance level from 1 to 50 μmol photons·m?2·s?1. The filaments of Spirogyra showed random bending and stretching movement under red or far‐red light, but the bundles did not move toward the light source. There was no distinct diurnal rhythm in the photomovement of Spirogyra spp.  相似文献   

4.
Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.Abbreviations 9-HFCA 9-hydroxyfluorenecarboxylic acid - NPA naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - IAA indole-3-acetic acid  相似文献   

5.
Some species of Spirogyra living in streams can anchor to the substratum by differentiating a rhizoid from a terminal cell of a filament. Rhizoid differentiation occurs in the light but not in the dark. When a filament of Spirogyra sp. competent for rhizoid differentiation was incubated in a medium containing 0.1% saponin, terminal cells were released one by one, forming single cells. Single cells effectively differentiated to be rhizoids when saponin in the incubation medium was removed. The single-cell system developed in the present study seems suitable for analysis of gene expression during rhizoid differentiation of Spirogyra.  相似文献   

6.
Lamparter T  Hughes J  Hartmann E 《Planta》1998,206(1):95-102
In darkness, protonemal filaments of Ceratodon purpureus (Brid.) grow negatively gravitropically (upwards). Red light induces a positive phototropic response mediated by the photoreceptor phytochrome. A red light treatment also has an inhibitory effect on the gravitropic response, an effect also mediated by phytochrome. In this study the effects of blue light on phototropism and on gravitropism were analysed. Unilateral blue light resulted in only a weak phototropic response, but markedly randomised growth direction. Blue light given together with a gravitropic stimulus reversed the gravitropism, changing it from negative to positive (filaments grow downward). The effect of blue light was also analysed with the mutant ptr116, which is defective in the biosynthesis of the phytochrome chromophore, and in a newly isolated mutant wwr2, which is positively gravitropic in darkness. Blue light induced the same reversal of gravitropism in ptr116 as in the wild type, indicating that phytochrome is not involved in this process. In wwr2 the direction of gravitropism was unaltered by the blue light treatment. Light also affects chlorophyll content and the size of plastids, potential statoliths for gravitropism. Red light induced an increase in plastid size and chlorophyll content in the wild type but not in ptr116. Blue light induced a similar change in wild type plastids. It seems as though light-induced alterations of gravitropism are not simply mediated by alterations in plastid properties, and that red light and blue light evoke fundamentally different responses. Received: 11 July 1997 / Accepted: 30 January 1998  相似文献   

7.
The formation of the nuclear envelope in the mitosis ofSpirogyra was studied with an electron microscope. The nuclear envelope was disrupted around the spindle equator in the metaphase. Many small vesicles were observed in the metaphase spindle. These vesicles surrounded the masses of chromosomes and nucleolar substance in the early anaphase, and they fused with each other to form daughter nuclear envelopes during the early anaphase. The formation of new envelopes from small vesicles at such an early mitotic anaphase is reported here for the first time. The possible origin of these vesicles is also discussed.  相似文献   

8.
Ruppel NJ  Hangarter RP  Kiss JZ 《Planta》2001,212(3):424-430
The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arabidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response. Received: 22 May 2000 / Accepted: 3 July 2000  相似文献   

9.
Although the effects of gravity on root growth are well known and interactions between light and gravity have been reported, details of root phototropic responses are less documented. We used high-resolution image analysis to study phototropism in primary roots of Zea mays L. Similar to the location of perception in gravitropism, the perception of light was localized in the root cap. Phototropic curvature away from the light, on the other hand, developed in the central elongation zone, more basal than the site of initiation of gravitropic curvature. The phototropic curvature saturated at approximately 10 micromoles m-2 s-1 blue light with a peak curvature of 29 +/- 4 degrees, in part due to induction of positive gravitropism following displacement of the root tip from vertical during negative phototropism. However, at higher fluence rates, development of phototropic curvature is arrested even if gravitropism is avoided by maintaining the root cap vertically using a rotating feedback system. Thus continuous illumination can cause adaptation in the signalling pathway of the phototropic response in roots.  相似文献   

10.
Platten JD  Shabala SN  Elliott RC  Reid JB 《Planta》2004,220(2):222-229
A single-gene recessive mutant which displays increased phototropic and gravitropic responses has been isolated in Pisum sativum L. cv. Torsdag and is provisionally named mtr-1, for its modified tropic response. Mutant plants attain a greater degree of bending during both phototropic and gravitropic induction due to an extension of the curvature phase. In addition to their increase in tropic curvature, mutant plants have longer and narrower leaves as mature plants, attenuated blue-light-induced ion flux responses, and lower levels of PsPK5 mRNA (a PHOT1 orthologue). Possible causes of these effects are discussed.  相似文献   

11.
Schizaea pusilla is a rare fern that occurs in acidic bogs and is one of the few fern species that maintains a filamentous gametophyte throughout its development. To expand our knowledge of the physiology of this fern, phototropic responses were examined in young gametophytes. In contrast to germ filaments of other fern species, apical protonemata of young gametophytes are negatively phototropic in continuous white, red and blue light at all fluence rates tested. The expression of phototropic curvature is not limited by time since apical protonemata are also negatively phototropic when they are given brief exposures of light and then placed in the dark. In other lower plant groups such as mosses and some algae, the direction of phototropic curvature can change depending on light quality and intensity, but in young gametophytes of Schizaea, negative phototropic curvature was observed in all conditions studied. Blue light is the most effective in promoting the negative phototropic response in Schizaea.  相似文献   

12.
J. M. Franssen  R. D. Firn  J. Digby 《Planta》1982,155(4):281-286
The differential growth causing second positive phototropic curvature in intact, black-capped and decapitated Avena coleoptiles has been measured. In all cases the curvature is brought about by a cessation in growth of the illuminated side. The fact that shading the apex does not significantly alter the initial steps of differential growth means that the subapical zones can perceive and respond to unilateral illumination. Decapitation significantly reduces coleoptile growth, especially in the most apical zone. However, the fact that differential growth is still evident in the other zones of decapitated coleoptiles within 30 min of unilateral illumination requires one to conclude that the apex cannot be controlling the differential growth in those basal zones.  相似文献   

13.
J. Burgess  P. J. Linstead 《Planta》1981,151(4):331-338
Protoplasts prepared from protonemal cultures of the moss Physcomitrella patens begin to regenerate a new cell wall within 1 h of removal from cellulase. The wall is seen as a gradually thickening mat of fibres when examined by scanning electron microscopy. Development of filaments from protoplasts takes place in the majority of cases only after one or more cell divisions have occurred. The direction of emergence of filaments is random in uniform light, but strongly negatively phototropic in bright unidirectional horizotal light. Filament growth is also strongly negatively phototropic. The influence of unidirectional light can be destroyed by incubating protoplasts in the presence of colchicine. Filaments growing in unidirectional light have cytoplasmic microtubules running along their long axes and in close association with large organelles. These results are discussed in terms of the potential for this system for the study of polarity in plants.  相似文献   

14.
By placing seedlings of sunflower (Helianthus annuus L.) or maize (Zea mays L.) on agar plates containing a pH indicator dye it is possible to observe surface pH patterns along the growing seedling by observing color changes of the indicator dye. Using this method we find that in geotropically stimulated sunflower hypocotyls or maize coleoptiles there is enhanced proton efflux on the lower surface of the organ prior to the initiation of curvature. As curvature develops the pattern of differential acid efflux becomes more intense. A similar phenomenon is observed when these organs are exposed to unilateral illumination, i.e. enhanced acid efflux occurs on the dark side of the organ prior to the initiation of phototropic curvature and the pattern of differential acid efflux intensifies as phototropic curvature develops. These observations indicate that differential acid efflux occurs in response to tropistic stimuli and that the acid efflux pattern may mediate the development of tropistic curvatures.  相似文献   

15.
Soga K  Wakabayashi K  Kamisaka S  Hoson T 《Planta》2004,218(6):1054-1061
Hypergravity caused by centrifugation inhibits elongation growth of shoots by decreasing the cell wall extensibility via suppression of xyloglucan breakdown as well as by the thickening of cell walls. The mechanism of graviperception in hypergravity-induced growth inhibition was investigated in Arabidopsis [A. thaliana (L.) Heynh.] hypocotyls and azuki bean (Vigna angularis Ohwi et Ohashi) epicotyls. Hypergravity caused growth suppression in both sgr1-1 and pgm1, which are Arabidopsis mutants deprived of gravitropism, as in wild-type plants, suggesting that the graviperception in hypergravity-induced growth inhibition of shoots is independent of that in gravitropism. Hypergravity had no effects on growth of azuki bean epicotyls or Arabidopsis hypocotyls in the presence of lanthanum or gadolinium, which are blockers of mechanoreceptors. Moreover, lanthanum or gadolinium at the same concentration had no influence on gravitropism of azuki bean epicotyls and Arabidopsis hypocotyls. Hypergravity had no effects on cell wall extensibility and affected neither xyloglucan metabolism nor the thickness of cell walls in the lanthanum- or gadolinium-treated azuki bean epicotyls. Lanthanum or gadolinium inhibited the hypergravity-induced increase in the pH of the apoplastic fluid in the epicotyls, which is involved in the processes of the suppression of xyloglucan breakdown due to hypergravity. These findings suggest that plants perceive the hypergravity stimuli by mechanoreceptors in the plasma membrane, and utilize the perceived signal to regulate the growth rate of their shoots.Abbreviations HC-I Hemicellulose-I - HC-II Hemicellulose-II  相似文献   

16.
Phototropic response in etiolated pea (Pisum sativum L. cv Alaska) seedlings is poor. However, the curvature induced by unilateral blue light can be hastened and increased in magnitude by a previously administered red light pulse followed by several hours of darkness. Phytochrome is involved in the red light effect. Phototropic response was almost completely inhibited by removal of the apical bud and hook, but it was restored if exogenous indole-3-acetic acid was applied apically to the cut stump. Therefore, the stem contains both the phototropic photoreceptor and response mechanism. Perception of gravity and gravitropic response were also localized in the stem, but gravitropism was scarcely inhibited by decapitation. It was also observed that the kinetics and curvature pattern of gravitropism differed greatly from those of phototropism. Like phototropism, stem nutation required auxin and was promoted by red light. Unlike phototropism, photoenhanced nutational curvature required the apical hook and was propagated as a wave down the stem. Naphthylphthalamic acid inhibited, in order of decreasing effect, nutation, phototropism/gravitropism, and growth. Phototropism, gravitropism, and nutation appear to represent distinct forms of stem movement with fundamental differences in the mechanisms of curvature development.  相似文献   

17.
Nick P  Schafer E 《Planta》1988,173(2):213-220
The influence of gravitropic stimulation upon blue-light-induced first positive phototropism for stimulations in the same (light source and center of gravity opposite to each other) and in opposing directions was investigated in maize cole-optiles by measuring fluence-response patterns. As a result of gravitropic counterstimulation, phototropic bending was transient with maximum curvature occurring 100 min after stimulation. On a horizontal clinostat, however, the seedlings curved for 20 h. Gravistimulation in the opposite direction acted additively upon blue-light curvature. Gravistimulation in the same direction as phototropic stimulation produced a complex behaviour deviating from simple additivity. This pattern can be explained by a gravitropically mediated sensitization of the phototropic reaction, an optimal dependence of differential growth on the sum of photo-and gravistimulation, and blue-light-induced inhibition of gravitropic curvature at high fluences. These findings indicate that several steps of photo-and gravitransduction are separate. Preirradiation with red light desensitized the system independently of applied gravity-treatment, indicating that the site of red-light interaction is common to both transduction chains.Abbreviations BL blue light - G+ stimulation by light and gravity in the same direction (i.e. light source and center of gravity opposite to each other) - G- stimulation by light and gravity in opposing directions  相似文献   

18.
There is general agreement that during root gravitropism some sort of growth-modifying signal moves from the cap to the elongation zone and that this signal ultimately induces the curvature that leads to reorientation of the root. However, there is disagreement regarding both the nature of the signal and the pathway of its movement from the root cap to the elongation zone. We examined the pathway of movement by testing gravitropism in primary roots of maize (Zea mays L.) from which narrow (0.5 mm) rings of epidermal and cortical tissue were surgically removed from various positions within the elongation zone. When roots were girdled in the apical part of the elongation zone gravitropic curvature occurred apical to the girdle but not basal to the girdle. Filling the girdle with agar allowed curvature basal to the girdle to occur. Shallow girdles, in which only two or three cell layers (epidermis plus one or two cortical cell layers) were removed, prevented or greatly delayed gravitropic curvature basal to the girdle. The results indicate that the gravitropic signal moves basipetally through the outermost cell layers, perhaps through the epidermis itself.  相似文献   

19.
Using two species ofSpirogyra and one species ofZygnema, it was demonstrated on a quantitative basis that these algal filaments grow while twisting around their own axis. The sense of spiral growth of the cell wall inSpirogyra-1 was always left-handed being coincident with the sense of chloroplast helix. InSpirogyra-2, the growth vector of the cell wall was likewise left-handed in most cases, but there occurred right-handed growth also. InZygnema both left-handed and right-handed senses of spiral growth were found in nearly equal frequencies. Besides the natural cell wall growth, the effects of longitudinal tension and turgor pressure on elongation and twisting of the filaments were briefly studied. It was shown that the cell wall of Zygnemataceae exhibited mechanical anisotropy in helical direction.  相似文献   

20.
F. Grolig 《Protoplasma》1990,155(1-3):29-42
Summary Organelle transport in the cortical cytoplasm of interphaseSpirogyra crassa cells was investigated in vivo by real-time video-enhanced DIC microscopy. Four classes of particles with different temporal pattern of movement shared the same tracks, which by staining with rhodamine phalloidine and reversible inhibition of organelle transport by cytochalasin D were identified as bundles of actin filaments. The most intriguing type of movement was revealed by a tubular organelle resembling elements of the endoplasmic reticulum. Elements of this organelle showed scarcely any net translocation during interphase, so that movement appeared rather agitational. In contrast to an immobile, polygonal network of endoplasmic reticulum underneath the plasmalemma, the tubular organelle did not stain in vivo by 3,3-dihexyloxacarbocyanine iodide (DiOC).Abbreviations DIC differential interference contrast - DiOC 3,3-dihexyloxacarbocyanine iodide - ER endoplasmic reticulum - MF microfilament (bundle of actin filaments) - MT microtubule - RLP rhodamine(-labeled) phalloidin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号