首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila heart, also called the dorsal vessel, is an organ for hemolymph circulation that resembles the vertebrate heart at its transient linear tube stage. Dorsal vessel morphogenesis shares several similarities with early events of vertebrate heart development and has proven to be an insightful system for the study of cardiogenesis due to its relatively simple structure and the productive use of Drosophila genetic approaches. In this review, we summarize published findings on Drosophila heart development in terms of the regulators and genetic pathways required for cardiac cell specification and differentiation, and organ formation and function. Emerging genome-based strategies should further facilitate the use of Drosophila as an advantageous system in which to identify previously unknown genes and regulatory networks essential for normal cardiac development and function.  相似文献   

2.
Vertebrate tinman homologues and cardiac differentiation.   总被引:4,自引:0,他引:4  
In Drosophila, the homeobox gene tinman is required for specification of dorsal vessel and a number of mesodermal subtypes. Six tinman homologues have now been found in diverse vertebrate species: Nkx2-3, 2-5, 2-6, 2-7, 2-8 and 2-9. Of these, Nkx2-5 appears to be the mostly highly conserved among species, in terms of both primary protein sequence and mRNA expression pattern. Of the others, some have been found as yet only in a single species. Although expression patterns of vertebrate tinman homologues indicate that they may play a role in the specification of several mesodermal or endodermal tissues, to date most attention have been focussed on their role in cardiac development. Results of these studies indicate that, as for Drosophila tinman, vertebrate tinman homologues may be required for heart formation, but may not be sufficient. Studies in Drosophila are defining other pathways which are required in concert with tinman for dorsal vessel formation. Circumstantial evidence suggests that similar pathways may be operative in vertebrate heart formation. This review summarizes recent advances in our understanding of vertebrate tinman homologues and interacting genetic pathways.  相似文献   

3.
The linear cardiac tube of Drosophila, the dorsal vessel, is an important model organ for the study of cardiac specification and patterning in vertebrates. In Drosophila, the Hox segmentation gene abdominal-A (abd-A) is required for the specification of a functionally distinct heart region at the posterior of the dorsal vessel, from which blood is pumped anteriorly through a tube termed the aorta. Since we have previously shown that the posterior part of the aorta is specified during embryogenesis to form the adult heart during metamorphosis, we determined if the embryonic aorta is also patterned by the function of Hox segmentation genes. Using gain- and loss-of-function experiments, we demonstrate that the three Hox genes expressed in the posterior aorta and heart are sufficient to confer heart or posterior aorta fate throughout the dorsal vessel. Additionally, we demonstrate that Ultrabithorax and abd-A, but not Antennapedia, function to control cell number in the dorsal vessel. These studies add robustness to the model that homeotic selector genes pattern the Drosophila dorsal vessel, and further extend our understanding of how the cardiac tube is patterned in animal models.  相似文献   

4.
5.
6.
利用果蝇模型研究人类心脏早期发育的分子机理(英文)   总被引:2,自引:0,他引:2  
近年来 ,果蝇心脏特化的遗传机制已初步研究清楚 ,但控制人类心脏早期发育的基因尚待鉴定。因为调控果蝇和脊椎动物早期心脏细胞命运定型的途径具有保守性 ,果蝇是一种探讨人类心脏早期发育的分子机理的理想动物模式。为此目的 ,我们采用P转座子和EMS诱变技术建立了约 3 0 0 0个隐性致死基因平衡系。通过心脏前体细胞特异性抗体免疫组化筛选 ,我们检出 2 0 0余个表现心脏突变表型的平衡致死系。我们进一步利用RNAi技术对一些基因的功能进行了初步的研究 ,证明这些基因表现RNAi的突变表型 ,该类突变表型与基因突变时表现的表型相似 ,即心管呈缺陷型或无心脏前体细胞形成。利用果蝇和人类基因组计划获得的成果 ,我们从果蝇心脏侯选基因中初步克隆和鉴定了 5 0个人类同源基因 ,其中 2 0个是新基因。Northen印迹分析表明 ,一部分人类基因在心脏组织中有表达 ,从而为研究这些基因在人类心脏早期发育中的作用提供了信息。目前 ,我们正在建立转基因果蝇 ,以此为模型研究这些基因是否对心肌细胞发生或心肌功能起调控作用。产生心肌细胞突变类型的基因如果类似于人类心脏病综合症 ,则可以作为人类心脏疾病侯选基因作进一步的分析。  相似文献   

7.
8.
Understanding the basis of normal heart remodeling can provide insight into the plasticity of the cardiac state, and into the potential for treating diseased tissue. In Drosophila, the adult heart arises during metamorphosis from a series of events, that include the remodeling of an existing cardiac tube, the elaboration of new inflow tracts, and the addition of a layer of longitudinal muscle fibers. We have identified genes active in all these three processes, and studied their expression in order to characterize in greater detail normal cardiac remodeling. Using a Transglutaminase-lacZ transgenic line, that is expressed in the inflow tracts of the larval and adult heart, we confirm the existence of five inflow tracts in the adult structure. In addition, expression of the Actin87E actin gene is initiated in the remodeling cardiac tube, but not in the longitudinal fibers, and we have identified an Act87E promoter fragment that recapitulates this switch in expression. We also establish that the longitudinal fibers are multinucleated, characterizing these cells as specialized skeletal muscles. Furthermore, we have defined the origin of the longitudinal fibers, as a subset of lymph gland cells associated with the larval dorsal vessel. These studies underline the myriad contributors to the formation of the adult Drosophila heart, and provide new molecular insights into the development of this complex organ.  相似文献   

9.
Bier E  Bodmer R 《Gene》2004,342(1):1-11
A variety of studies that are currently underway may validate the fruit fly as an in vivo model for analyzing genes involved in cardiac function. Many mutations in conserved genetic pathways have been found, including those controlling development and physiology. Because homologous genes control early developmental events as well as functional components of the Drosophila and vertebrate hearts, the fly is the simplest existing model system that can be used to assay genes involved in human congenital heart disease (CHD). The wide variety of genetic tools available to Drosophila researchers offers many technical advantages for rapidly screening through large numbers of candidate genes. Thus, an important future and long-term direction is likely to be the use of Drosophila as a vehicle for analyzing polygenic traits as an aid in human genetics. One can anticipate a time in the not too distant future when mutant lines exist for every gene in vertebrate systems, such as mice and zebrafish. However, one of the enduring problems that will not easily be addressed by such resources will be the tracking of complex traits defined by polygenic variants. For this level of genetic analysis, simple genetic model systems including yeast, Caenorhabditis elegans, and Drosophila melanogaster will undoubtedly play a crucial ongoing role. Of them, Drosophila will be critical for examining gene networks involved in organogenesis and is clearly the system of choice for studying cardiac development, function and aging, since among the simple genetic models it is the only one with a fluid pumping heart.  相似文献   

10.
11.
The Drosophila melanogaster dorsal vessel is a linear organ that pumps blood through the body. Blood enters the dorsal vessel in a posterior chamber termed the heart, and is pumped in an anterior direction through a region of the dorsal vessel termed the aorta. Although the genes that specify dorsal vessel cell fate are well understood, there is still much to be learned concerning how cell fate in this linear tube is determined in an anteroposterior manner, either in Drosophila or in any other animal. We demonstrate that the formation of a morphologically and molecularly distinct heart depends crucially upon the homeotic segmentation gene abdominal-A (abd-A). abd-A expression in the dorsal vessel was detected only in the heart, and overexpression of abd-A induced heart fate in the aorta in a cell-autonomous manner. Mutation of abd-A resulted in a loss of heart-specific markers. We also demonstrate that abd-A and sevenup co-expression in cardial cells defined the location of ostia, or inflow tracts. Other genes of the Bithorax Complex do not appear to participate in heart specification, although high level expression of Ultrabithorax is capable of inducing a partial heart fate in the aorta. These findings for the first time demonstrate a specific involvement for Hox genes in patterning the muscular circulatory system, and suggest a mechanism of broad relevance for animal heart patterning.  相似文献   

12.
The embryonic dorsal vessel in Drosophila possesses anteroposterior polarity and is subdivided into two chamber-like portions, the aorta in the anterior and the heart in the posterior. The heart portion features a wider bore as compared with the aorta and develops inflow valves (ostia) that allow the pumping of hemolymph from posterior toward the anterior. Here, we demonstrate that homeotic selector genes provide positional information that determines the anteroposterior subdivision of the dorsal vessel. Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A), and Abdominal-B (Abd-B) are expressed in distinct domains along the anteroposterior axis within the dorsal vessel, and, in particular, the domain of abd-A expression in cardioblasts and pericardial cells coincides with the heart portion. We provide evidence that loss of abd-A function causes a transformation of the heart into aorta, whereas ectopic expression of abd-A in more anterior cardioblasts causes the aorta to assume heart-like features. These observations suggest that the spatially restricted expression and activity of abd-A determine heart identities in cells of the posterior portion of the dorsal vessel. We also show that Abd-B, which at earlier stages is expressed posteriorly to the cardiogenic mesoderm, represses cardiogenesis. In light of the developmental and morphological similarities between the Drosophila dorsal vessel and the primitive heart tube in early vertebrate embryos, these data suggest that Hox genes may also provide important anteroposterior cues during chamber specification in the developing vertebrate heart.  相似文献   

13.
Heart development exhibits some striking similarities between vertebrates and arthropods, for example in both cases the heart develops as a linear tube from mesodermal cells. Furthermore, the underlying molecular pathways exhibit a significant number of similarities between vertebrates and the fruit fly Drosophila, suggesting a common origin of heart development in the last common ancestor of flies and vertebrates. However, there is hardly any molecular data from other animals. Here we show that many of the key genes are also active in heart development in the spider Cupiennius salei. Spiders belong to the chelicerates and are distantly related to insects with respect to the other arthropods. The tinman/Nkx2.5 ortholog is the first gene to be specifically expressed in the presumptive spider heart, like in flies and vertebrates. We also show that tinman is expressed in a similar way in the beetle Tribolium castaneum. Taken together this demonstrates that tinman has a conserved role in the specification of the arthropod heart. In addition, we analyzed the expression of other heart genes (decapentaplegic, Wnt5, H15, even-skipped, and Mef2 ) in Cupiennius. The expression of these genes suggests that the genetic pathway of heart development may be largely conserved among arthropods. However, a major difference is seen in the earlier expression of the even-skipped gene in the developing spider heart compared with Drosophila, implying that the role of even-skipped in heart formation might have changed during arthropod evolution. The most striking finding, however, is that in addition to the dorsal tissue of the fourth walking leg segment and the opisthosomal segments, we discovered tinman-expressing cells that arise from a position dorsal to the cephalic lobe and that contribute to the anterior dorsal vessel. In contrast to the posterior heart tissue, these cells do not express the other heart genes. The spider heart thus is composed of two distinct populations of cells.  相似文献   

14.
Most internal organs are situated in a coelomic cavity and are covered by a mesothelium. During heart development, epicardial cells (a mesothelium) move to and over the heart, undergo epithelial-mesenchymal transition (EMT), and subsequently differentiate into endothelial and vascular smooth muscle cells. This is thought to be a unique process in blood vessel formation. Still, structural and developmental similarities between the heart and gut led us to test the hypothesis that a conserved or related mechanism may regulate blood vessel development to the gut, which, similar to the heart, is housed in a coelomic cavity. By using a combination of molecular genetics, vital dye fate mapping, organ culture and immunohistochemistry, we demonstrate that the serosal mesothelium is the major source of vasculogenic cells in developing mouse gut. Our studies show that the gut is initially devoid of a mesothelium but that serosal mesothelial cells expressing the Wilm's tumor protein (Wt1) move to and over the gut. Subsequently, a subset of these cells undergoes EMT and migrates throughout the gut. Using Wt1-Cre genetic lineage marking of serosal cells and their progeny, we demonstrate that these cells differentiate to smooth muscle of all major blood vessels in the mesenteries and gut. Our data reveal a conserved mechanism in blood vessel formation to coelomic organs, and have major implications for our understanding of vertebrate organogenesis and vascular deficiencies of the gut.  相似文献   

15.
Tubulogenesis is an essential component of organ development, yet the underlying cellular mechanisms are poorly understood. We analyze here the formation of the Drosophila melanogaster cardiac lumen that arises from the migration and subsequent coalescence of bilateral rows of cardioblasts. Our study of cell behavior using three-dimensional and time-lapse imaging and the distribution of cell polarity markers reveals a new mechanism of tubulogenesis in which repulsion of prepatterned luminal domains with basal membrane properties and cell shape remodeling constitute the main driving forces. Furthermore, we identify a genetic pathway in which roundabout, slit, held out wings, and dystroglycan control cardiac lumen formation by establishing nonadherent luminal membranes and regulating cell shape changes. From these data we propose a model for D. melanogaster cardiac lumen formation, which differs, both at a cellular and molecular level, from current models of epithelial tubulogenesis. We suggest that this new example of tube formation may be helpful in studying vertebrate heart tube formation and primary vasculogenesis.  相似文献   

16.
影响果蝇心脏发育的基因突变   总被引:1,自引:0,他引:1  
最近的研究表明,果蝇与脊椎动物及人的心脏早期发育具有极为相似的基因控制机理,果蝇已成为研究人体心脏早期发育基因控制的理想模式动物。利用化学诱变剂甲磺酸乙酯大规模地诱变影响果蝇心脏发育的基因,利用心脏特异性抗体染色进行筛选,获得了112个有心脏突变表型的致死系,其中32个致死系的心脏畸变表型有别于目前已知心脏发育基因的突变表型。细胞遗传学定位研究表明在多线染色体的13个带纹区的某些隐性致死突变基因是目前未知的,其功能可能与发育有关的基因。  相似文献   

17.
In Drosophila, the heart is composed of a simple linear tube constituted of 52 pairs of myoendothelial cells which differentiate during embryogenesis to build up a functional mature organ. The cardiac tube is a contractile organ with autonomous muscular activity which functions as a hemolymph pump in an open circulatory circuit. The cardiac tube is organized in metamers which contain six pairs of cardioblasts per segment. Within each metamer the cardioblasts express a combination of genetic markers underlying their functional diversity. For example, the two most posterior cardiac cells in segments A5 to A7 differentiate into ostiae which allow the inflow of hemolymph in the tube. An additional axial information along the anteroposterior axis orchestrates the subdivision of the cardiac tube into an "aorta" in the anterior region and a "heart" in the posterior region which behave as distinct functional entities. The major pacemaker activity is located in the most caudal part of the heart. This analysis has being made possible by the identification and the utilization of specific morphological and genetic markers and an in vivo observation of cardiac function in the embryo. Functional organogenesis of the cardiac tube is accurately controlled by genetic programs that have been in part identified. Hox genes are responsible for the axial subdivision of the tube into functional modules. They activate, in their specific domains of expression, target genes effectors of the terminal differentiation. On the other hand, part of the information required for segmental information is provided by Hedgehog, a morphogen secreted by dorsal ectoderm, whose activity triggers the ostiae formation in the heart domain.  相似文献   

18.
Xue Y  Kuok C  Xiao A  Zhu Z  Lin S  Zhang B 《遗传学报》2010,37(10):685-693
Mical(molecule interacting with CasL)represent a conserved family of cytosolic multidomain proteins that has been shown to be associated with a variety of cellular processes,including axon guidance,cell movement,cell-cell junction formation,vesicle trafficking and cancer cell metastasis.However,the expression and function of these genes during embryonic development have not been comprehensively characterized,especially in vertebrate species,although some limited in vivo studies have been carried out in neural and musculature systems of Drosophila and in neural systems of vertebrates.So far,no mica/family homologs have been reported in zebrafish,an ideal vertebrate model for the study of developmental processes.Here we report eight homologs of m/ca/family genes in zebrafish and their expression profiles during embryonic development.Consistent with the findings in Drosophila and mammals,most zebrafish mical family genes display expression in neural and musculature systems.In addition,five mica/homologs are detected in heart,and one,micall2a,in blood vessels.Our data established an important basis for further functional studies of mica/family genes in zebrafish,and suggest a possible role for mica/genes in cardiovascular development.  相似文献   

19.
The steps that lead to the formation of a single primitive heart tube are highly conserved in vertebrate and invertebrate embryos. Concerted migration of the two lateral cardiogenic regions of the mesoderm and endoderm (or ectoderm in invertebrates) is required for their fusion at the midline of the embryo. Morphogenetic signals are involved in this process and the extracellular matrix has been proposed to serve as a link between the two layers of cells. Pericardin (Prc), a novel Drosophila extracellular matrix protein is a good candidate to participate in heart tube formation. The protein has the hallmarks of a type IV collagen alpha-chain and is mainly expressed in the pericardial cells at the onset of dorsal closure. As dorsal closure progresses, Pericardin expression becomes concentrated at the basal surface of the cardioblasts and around the pericardial cells, in close proximity to the dorsal ectoderm. Pericardin is absent from the lumen of the dorsal vessel.Genetic evidence suggests that Prc promotes the proper migration and alignment of heart cells. Df(3)vin6 embryos, as well as embryos in which prc has been silenced via RNAi, exhibit similar and significant defects in the formation of the heart epithelium. In these embryos, the heart epithelium appears disorganized during its migration to the dorsal midline. By the end of embryonic development, cardial and pericardial cells are misaligned such that small clusters of both cell types appear in the heart; these clusters of cells are associated with holes in the walls of the heart. A prc transgene can partially rescue each of these phenotypes, suggesting that prc regulates these events. Our results support, for the first time, the function of a collagen-like protein in the coordinated migration of dorsal ectoderm and heart cells.  相似文献   

20.
We isolated a full-length cDNA clone of amphioxus AmphiNk2-tin, an NK2 gene similar in sequence to vertebrate NK2 cardiac genes, suggesting a potentially similar function to Drosophila tinman and to vertebrate NK2 cardiac genes during heart development. During the neurula stage of amphioxus, AmphiNk2-tin is expressed first within the foregut endoderm, then transiently in muscle precursor cells in the somites, and finally in some mesoderm cells of the visceral peritoneum arranged in an approximately midventral row running beneath the midgut and hindgut. The peritoneal cells that express AmphiNk2-tin are evidently precursors of the myocardium of the heart, which subsequently becomes morphologically detectable ventral to the gut. The amphioxus heart is a rostrocaudally extended tube consisting entirely of myocardial cells (at both the larval and adult stages); there are no chambers, valves, endocardium, epicardium, or other differentiated features of vertebrate hearts. Phylogenetic analysis of the AmphiNk2-tin sequence documents its close relationship to vertebrate NK2 class cardiac genes, and ancillary evidence suggests a relationship with the Drosophila NK2 gene tinman. Apparently, an amphioxus-like heart, and the developmental program directing its development, was the foundation upon which the vertebrate heart evolved by progressive modular innovations at the genetic and morphological levels of organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号