首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
M Wada  K Kutsukake  T Komano  F Imamoto  Y Kano 《Gene》1989,76(2):345-352
The closely related Escherichia coli genes hupA and hupB each encode a bacterial histone-like protein HU. We report here that DNA inversion mediated by hin, gin, pin and rci but not by cin is blocked in a hupA hupB double mutant, although inversions in these systems occur in the hupA or hupB single mutant as efficiently as in the wild-type strain. These findings show that HU protein participates in site-specific DNA inversion in E. coli and that only one subunit, either HU-1 or HU-2, is sufficient for this inversion.  相似文献   

2.
Escherichia coli hupA hypB double mutants that lack HU protein have severe cellular defects in cell division, DNA folding, and DNA partitioning. Here we show that the sfiA11 mutation, which alters the SfiA cell division inhibitor, reduces filamentation and production of anucleate cells in AB1157 hupA hupB strains. However, lexA3(Ind-) and sfiB(ftsZ)114 mutations, which normally counteract the effect of the SfiA inhibitor, could not restore a normal morphology to hupA hupB mutant bacteria. The LexA repressor, which controls the expression of the sfiA gene, was present in hupA hupB mutant bacteria in concentrations half of those of the parent bacteria, but this decrease was independent of the specific cleavage of the LexA repressor by activated RecA protein. One possibility to account for the filamentous morphology of hupA hupB mutant bacteria is that the lack of HU protein alters the expression of specific genes, such as lexA and fts cell division genes.  相似文献   

3.
Subunit-specific phenotypes of Salmonella typhimurium HU mutants.   总被引:9,自引:4,他引:5       下载免费PDF全文
Salmonella hupA and hupB mutants were studied to determine the reasons for the high degree of conservation in HU structure in bacteria. We found one HU-1-specific effect; the F'128 plasmid was 25-fold less stable in hupB compared with hupA or wild-type cells. F' plasmids were 120-fold more unstable in hupA hupB double mutants compared with wild-type cells, and the double mutant also had a significant alteration in plasmid DNA structure. pBR322 DNA isolated from hupA hupB strains was deficient in supercoiling by 10 to 15% compared with wild-type cells, and the topoisomer distribution was significantly more heterogeneous than in wild-type or single-mutant strains. Other systems altered by HU inactivation included flagellar phase variation and phage Mu transposition. However, Mu transposition rates were only about fourfold lower in Salmonella HU double mutants. One reason that Salmonella HU double mutants may be less defective for Mu transposition than E. coli is the synthesis in double mutants of a new, small, basic heat-stable protein, which might partially compensate for the loss of HU. The results indicate that although either HU-1 or HU-2 subunit alone may accommodate the cellular need for general chromosomal organization, the selective pressure to conserve HU-1 and HU-2 structure during evolution could involve specialized roles of the individual subunits.  相似文献   

4.
A Jaffe  D Vinella    R D'Ari 《Journal of bacteriology》1997,179(11):3494-3499
Escherichia coli hupA hupB double mutants, lacking both subunits (HU1 and HU2) of the histone-like protein HU, accumulate secondary mutations. In some genetic backgrounds, these include mutations in the minCDE operon, inactivating this system of septation control and resulting in the formation of minicells. In the course of the characterization of hupA hupB mutants, we observed that the simultaneous absence of the HU2 subunit and the MukB protein, implicated in chromosome partitioning, is lethal for the bacteria; the integrity of either HU or MukB thus seems to be essential for bacterial growth. The HU protein has been shown to be involved in DNA replication in vitro; we show here that its inactivation in the hupA hupB double mutant disturbs the synchrony of replication initiation in vivo, as evaluated by flow cytometry. Our results suggest that global nucleoid structure, determined in part by the histone-like protein HU, plays a role in DNA replication initiation, in proper chromosome partitioning directed by the MukFEB proteins, and in correct septum placement directed by the MinCDE proteins.  相似文献   

5.
Y Kano  N Goshima  M Wada  F Imamoto 《Gene》1989,76(2):353-358
The closely related Escherichia coli genes hupA and hupB each encode a bacterial histone-like protein HU. We report here that mutator phage Mucts62 was unable to replicate in a hupA hupB double mutant, although it could replicate in hupA or hupB single mutant as efficiently as in the wild-type strain. Mucts62 was able to lysogenize the double mutant at 30 degrees C; cell killing occurred when the lysogen was incubated at 42 degrees C, but did not result in phage production. High-frequency non-replicative integration of Mu into host genomic DNA soon after infection could not be detected in the hupAB double mutant. These results provide the evidence that HU protein is essential for replicative transposition of Mu phage in E. coli, and also participates in high-frequency conservative integration.  相似文献   

6.
7.
8.
The HU protein is a small, basic, heat-stable DNA-binding protein that is well-conserved in prokaryotes and is associated with the bacterial nucleoid. In enterobacteria, including Escherichia coli, HU is a heterotypic dimer, HUalphabeta, composed of two closely related sub-units encoded by the hupA and hupB genes, respectively. HU was shown to participate in vitro in the initiation of DNA replication as an accessory factor to assist the action of DnaA protein in the unwinding of oriC DNA. To further elucidate the role of HU in the regulation of the DNA replication initiation process, we tested the synchrony phenotype in the absence of either one or both HU sub-units. The hupAB mutant exhibits an asynchronous initiation, the hupA mutant shows a similar reduced synchrony, whereas the hupB mutant shows a normal phenotype. Using a thermosensitive dnaA46 strain (dnaA46ts), an initiation mutant, we reveal a special role of HUbeta. The presence of a plasmid overproducing HUbeta in a dnaA46ts lacking HU (hupAB background) compensates for the thermosensitivity of this initiation mutant. Moreover, the overproduction of HUbeta confers to dnaA46ts a pattern of asynchrony similar to that of a dnaAcos, the intragenic suppressor of dnaA46ts. We show that the relative ratio of HUalpha versus HUbeta is greatly perturbed in dnaA46ts which accumulates little, if any, HUbeta. Therefore, the suppression of thermosensitivity in dnaA46hupAB by HUbeta may be caused by an unexpected absence of HUbeta in the dnaA46ts mutant. Visibly the HU composition is sensitive to the different states of DnaA, and may play a role during the regulation of the initiation process of the DNA replication by affecting subsequent events along the cell cycle.  相似文献   

9.
M Morita  Y Kano  F Imamoto  Y Sugino 《Gene》1989,76(2):359-362
Escherichia coli mutants deficient in the HU protein were used to test whether this protein is essential for generating DNA deletions adjacent to the ends of Tn3. There were no significant differences in the frequencies of the adjacent DNA deletions in the isogenic series which differ only in the HU loci (hupA or hupB), indicating that the HU protein is not essential for this reaction.  相似文献   

10.
Site-specific DNA inversion by the Hin recombinase requires the formation of a multicomponent nucleo-protein structure called an invertasome. In this structure, the two recombination sites bound by Hin are assembled together at the Fis-bound recombinational enhancer with the requisite looping of the intervening DNA segments. We have analyzed the role of the HU protein in invertasome assembly when the enhancer is located at variable positions close to one of the recombination sites. In the absence of HU in vitro and in hupA hupB mutant cells in vivo, invertasome assembly is very inefficient when there is < 104 bp of DNA between the enhancer and recombination site. Invertasome assembly in the presence of HU in vitro or in vivo displayed a periodicity beginning with 60 bp of intervening DNA that reflected its helical repeat. The average helical repeat for this DNA region was calculated by autocorrelation and Fourier transformation to be 11.2 bp per turn for supercoiled DNA both in the presence of HU in vitro and in hup+ cells in vivo. HU is the only protein in Escherichia coli that can promote invertasome formation with short DNA lengths between the enhancer and recombination sites. However, the presence of certain polyamines and a protein activity present in HeLa nuclear extracts can efficiently substitute for HU in invertasome assembly. These data support a model in which HU binds non-specifically to the DNA between the enhancer and recombination site to facilitate DNA looping.  相似文献   

11.
In bacteria, the complex nucleoid structure is folded and maintained by negative superhelical tension and a set of type II DNA-binding proteins, also called histonelike proteins. The most abundant type II DNA-binding protein is HU. Southern blot analysis showed that Salmonella typhimurium contained two HU genes that corresponded to Escherichia coli genes hupA (encoding HU-2 protein) and hupB (encoding HU-1). Salmonella hupA was cloned, and the nucleotide sequence of the gene was determined. Comparison of hupA of E. coli and S. typhimurium revealed that the HU-2 proteins were identical and that there was high conservation of nucleotide sequences outside the coding frames of the genes. A 300-member genomic library of S. typhimurium was constructed by using random transposition of MudP, a specialized chimeric P22-Mu phage that packages chromosomal DNA unidirectionally from its insertion point. Oligonucleotide hybridization against the library identified one MudP insertion that lies within 28 kilobases of hupA; the MudP was 12% linked to purH at 90.5 min on the standard map. Plasmids expressing HU-2 had a surprising phenotype; they caused growth arrest when they were introduced into E. coli strains bearing a himA or hip mutation. These results suggest that IHF and HU have interactive roles in bacteria.  相似文献   

12.
Insertion and deletion mutations of the hupB and hupA genes, which encode the HU-1 and HU-2 proteins, respectively, of Escherichia coli, have been constructed in vitro and transferred to the hup loci on the bacterial chromosome. The mutations were constructed by inserting a gene encoding chloramphenicol resistance or kanamycin resistance into the coding region of the hupB or hupA gene, respectively. A complete deletion of the hupA gene was constructed by replacing the entire hupA coding region with the kanamycin resistance gene. Cells in which either the hupB or the hupA gene is defective grow normally, but cells in which both of the hup genes are defective exhibit phenotypes different from the wildtype strain. The hupA-hupB double mutants are cold-sensitive, although their growth rate is normal at 37 degrees C. Furthermore, the viability of the hupA-hupB double mutants is severely reduced when the cells are subjected to either cold shock or heat shock, indicating that the hup genes are essential for cell survival under some conditions of stress. The double mutants also exhibit filamentation when grown in the lower range of permissive growth temperature.  相似文献   

13.
Gyrase is an essential topoisomerase in bacteria that introduces negative supercoils in DNA and relaxes the positive supercoils that form downstream of proteins tracking on DNA, such as DNA or RNA polymerases. Two gyrase mutants that suffer partial loss of function were used here to study the need for replication restart in conditions in which gyrase activity is affected. We show that the preprimosomal protein PriA is essential for the viability of these gyrB mutants. The helicase function of PriA is not essential. The lethality of the gyrB priA double mutants is suppressed by a dnaC809 mutation, indicating a requirement for primosome assembly in gyrB strains. The lethality of gyrB priA combination of mutations is independent of the level of DNA supercoiling, as gyrB and priA were also co-lethal in the presence of a DeltatopA mutation. Inactivation of homologous recombination did not affect the viability of gyrB mutants, indicating that replication restart does not require the formation of a recombination intermediate. We propose that the replisome is disassembled from replication forks when replication progression is blocked by the accumulation of positive supercoils in gyrase mutants, and that replication restarts via PriA-dependent primosome assembly, directly on the in-activated replication forks, without the formation of a recombination intermediate.  相似文献   

14.
We report the isolation of two mutations in the gyrB gene of Escherichia coli K12 obtained from an initial selection for resistance to coumermycin A1 and a subsequent screening for bacteria that fail to support site-specific recombination of phage lambda, i.e., Him-. These two mutations have a temperature-sensitive Him- phenotype, supporting site-specific recombination efficiently at low temperature, but inefficiently at high temperatures. Like other Him mutants, the gyrB-him mutants fail to plate phage Mu; again this defect is observed only at high temperatures. Additional thermally sensitive characteristics have also been observed; growth of lambda as well as maintenance of the plasmids pBR322 and F' gal are reduced at high temperature. Restriction of foreign DNA imposed by a P1 prophage is also reduced in these mutants. The temperature-sensitive phenotypic characteristics imposed by both the gyrB-him-230(Ts) and gyrB-him-231(Ts) mutations correlate with in vitro studies that show decreased gyrase activity, especially at higher temperatures, and in vivo studies showing reduced supercoiling of lambda DNA in the mutants at high temperature.  相似文献   

15.
Using HU chemical nucleases to probe HU-DNA interactions, we report here for the first time site-specific binding of HU to naked DNA. An unique feature of this interaction is the absolute requirement for negative DNA supercoiling for detectable levels of site-specific DNA binding. The HU binding site is the Mu spacer between the L1 and L2 transposase binding sites. Our results suggest recognition of an altered DNA structure which is induced by DNA supercoiling. We propose that recruitment of HU to this naked DNA site induces the DNA bending required for productive synapsis and transpososome assembly. Implications of HU as a supercoiling sensor with a potential in vivo regulatory role are discussed. Finally, using HU nucleases we have also shown that non-specific DNA binding by HU is stimulated by increasing levels of supercoiling.  相似文献   

16.
To study the mechanism of DNA gyrase-mediated illegitimate recombination in Escherichia coli, we isolated temperature-sensitive gyrA mutants that confer spontaneous illegitimate recombination and spontaneous induction of lambda prophage at higher frequencies than that in the wild-type. After reconstruction of single mutations by targeted mutagenesis, we confirmed that two single mutations, gyrAL492P and gyrAL488P, and a double mutation, gyrAI203V+gyrAI205V, show the same properties as those described above. With respect to the phenotypes of hyper-recombination and higher induction of lambda prophage, these mutations were dominant over the wild-type. Analysis of recombination junctions of lambdabio transducing phages formed spontaneously in these mutants showed that the parental E. coli bio and lambda recombination sites have a homologous sequence of only 0. 7 base-pair on average, indicating that homology is not required for this illegitimate recombination. Analysis of nucleotide sequences of mutant gyrA genes revealed that the gyrAL492P and gyrAL488P mutations contain amino acid substitutions of Leu492-->Pro and Leu488-->Pro, respectively, which correspond to the alpha18 helix in the breakage-reunion domain of DNA gyrase A subunit. The gyrAI203V and gyrAI205V mutations contain Ile203-->Val and Ile205-->Val, respectively, which correspond to the alpha10' helix, also in the breakage-reunion domain of DNA gyrase A subunit. Biochemical analysis indicated that the GyrA63 protein that contains the L492P mutation has an apparently normal supercoiling activity, but it also produces a small amount of linear DNA in the absence of DNA gyrase inhibitor during the supercoiling reaction, suggesting that the mutant DNA gyrase may have a defect at the step of religation or a defect in the subunit interaction. These results suggest that the recombination is induced by defects of religation and/or dimer formation in the mutant DNA gyrases, implying that two alpha helices, alpha10' and alpha18, of DNA gyrase A subunit have crucial roles in subunit interaction and/or resealing of DNA.  相似文献   

17.
In the absence of RecA, expression of the Tus protein of Escherichia coli is lethal when ectopic Ter sites are inserted into the chromosome in an orientation that blocks completion of chromosome replication. Using this observation as a basis for genetic selection, an extragenic suppressor of Tus-mediated arrest of DNA replication was isolated with diminished ability of Tus to halt DNA replication. Resistance to tus expression mapped to a mutation in the stop codon of the topA gene (topA869), generating an elongated topoisomerase I protein with a marked reduction in activity. Other alleles of topA with mutations in the carboxyl-terminal domain of topoisomerase I, topA10 and topA66, also rendered recA strains with blocking Ter sites insensitive to tus expression. Thus, increased negative supercoiling in the DNA of these mutants reduced the ability of Tus-Ter complexes to arrest DNA replication. The increase in superhelical density did not diminish replication arrest by disrupting Tus-Ter interactions, as Tus binding to Ter sites was essentially unaffected by the topA mutations. The topA869 mutation also relieved the requirement for recombination functions other than recA to restart replication, such as recC, ruvA and ruvC, indicating that the primary effect of the increased negative supercoiling was to interfere with Tus blockage of DNA replication. Introduction of gyrB mutations in combination with the topA869 mutation restored supercoiling density to normal values and also restored replication arrest at Ter sites, suggesting that supercoiling alone modulated Tus activity. We propose that increased negative supercoiling enhances DnaB unwinding activity, thereby reducing the duration of the Tus-DnaB interaction and leading to decreased Tus activity.  相似文献   

18.
Y Kano  T Ogawa  T Ogura  S Hiraga  T Okazaki  F Imamoto 《Gene》1991,103(1):25-30
The closely related Escherichia coli genes, hupA, hupB, himA and himD (hip), encode the bacterial histone-like protein subunits, HU-2, HU-1, IHF chi and IHF beta, respectively. We report here that E. coli minichromosomes [plasmids (2.7-12.2 kb) with oriC] carrying the intact mioC region were unable to transform mutants deficient in both HU and integration host factor (IHF), whereas they could transform mutants deficient in either HU or IHF as efficiently as the wild-type strain. Minichromosomes carrying a deletion of the proximal part of mioC or a DnaA box just upstream from mioC could not transform cells deficient in IHF, but could transform cells deficient in HU. These results suggested that HU and IHF participate in minichromosomal replication from oriC in E. coli.  相似文献   

19.
Identification of the tip-encoded receptor in bacterial sensing.   总被引:5,自引:2,他引:3       下载免费PDF全文
Relaxation of titratable supercoils in bacterial nucleoids was measured following treatment of topA mutants with coumermycin or oxolinic acid, inhibitors of DNA gyrase. Relaxation occurred after treatment of the mutants with either inhibitor. We detected no significant difference in relaxation between topA- and topA+ strains treated with coumermycin. This finding, together with previous observations, supports the idea that relaxation caused by coumermycin probably arises from the relaxing activity of gyrase itself. The source of DNA relaxation caused by oxolinic acid was not identified. Nucleoid supercoiling can be increased by adding oxolinic acid to a strain that carries three topoisomerase mutations: delta topA, gyrB225, and gyrA (Nalr) (S. H. Manes, G. J. Pruss, and K. Drlica, J. Bacteriol. 155:420-423, 1983). We found that this increase in supercoiling requires partial sensitivity to the drug and at the delta topA and gyrA mutations. Full resistance to oxolinic acid in the presence of the delta topA, gyrB225, and gyrA mutations was conferred by an additional mutation that maps at or near gyrB.  相似文献   

20.
Changes in DNA supercoiling in response to environmental signals such as osmolarity, temperature, or anaerobicity appear to play an underlying role in the regulation of gene expression in bacteria. Extensive genetic analyses have implicated the osmZ gene in this regulatory process: osmZ mutations are highly pleiotropic and alter the topology of cellular DNA. We have shown that the product of the osmZ gene is the "histone-like" protein H1 (H-NS). Protein H1 is one of the most abundant components of bacterial chromatin and binds to DNA in a relatively nonspecific fashion. These data imply a regulatory role for one of the major components of bacterial chromatin and provide support for the notion that changes in DNA topology and/or chromatin structure play a role in regulating gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号