首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified hepatic NADPH-cytochrome P-450 reductase, which was reconstituted with dilauroylphosphatidylcholine, catalyzed a one-electron reductive denitrosation of 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)-1-nitrosourea ([14C]CCNU) to give 1-(2-[14C]-chloroethyl)-3-(cyclohexyl)urea at the expense of NADPH. Ambient oxygen or anoxic conditions did not alter the rates of [14C]CCNU denitrosation catalyzed by NADPH-cytochrome P-450 reductase with NADPH. Electron equivalents for reduction could be supplied by NADPH or sodium dithionite. However, the turnover number with NADPH was slightly greater than with sodium dithionite. Enzymatic denitrosation with sodium dithionite or NADPH was observed in anaerobic incubation mixtures which contained NADPH-cytochrome P-450 reductase with or without cytochrome P-450 purified from livers of phenobarbital (PB)-treated rats; PB cytochrome P-450 alone did not support catalysis. PB cytochrome P-450 stimulated reductase activity at molar concentrations approximately equal to or less than NADPH-cytochrome P-450 reductase concentration, but PB cytochrome P-450 concentrations greater than NADPH-cytochrome P-450 reductase inhibited catalytic denitrosation. Cytochrome c, FMN, and riboflavin demonstrated different degrees of stimulation of NADPH-cytochrome P-450 reductase-dependent denitrosation. Of the flavins tested, FMN demonstrated greater stimulation than riboflavin and FAD had no observable effect. A 3-fold stimulation by FMN was not observed in the absence of NADPH-cytochrome P-450 reductase. These studies provided evidence which establish NADPH-cytochrome P-450 reductase rather than PB cytochrome P-450 as the enzyme in the hepatic endoplasmic reticulum responsible for CCNU reductive metabolism.  相似文献   

2.
Chorismate synthase of Neurospora crassa: a flavoprotein   总被引:4,自引:0,他引:4  
Chorismate synthase is purified from Neurospora crassa. The final step is accomplished by preparative electrophoresis. Its purity is estimated at ≥90% on the basis of analytical polyacrylamide gel electrophoresis. The enzyme appears to be active in at least two multimeric states, with a subunit molecular weight of ~55,000. The purified enzyme preparation is absolutely dependent on the presence of a reducing system, which can readily be provided under aerobic conditions by NADPH plus FMN or under stringent anaerobic conditions by dithionite. The following evidence implicates a physiological role for FMN in N. crassa chorismate synthase activity: (a) a preferential stimulation of activity by NADPH and FMN over other pyridine and flavin nucleotides, respectively, in both impure and purified enzyme preparations; (b) an alteration of the Chromatographic pattern of the enzyme on diethylaminoethylcellulose by the addition of FMN to the elution buffer; (c) an apparent binding of FMN to the enzyme as exhibited by gel filtration in the presence of the substrate, 3-enolpyruvylshikimate 5-phosphate; (d) a requirement for preliminary incubation with FMN, in concert with the substrate, to eliminate a reaction lag (i.e., to activate the enzyme); (e) a substrate-dependent diaphorase activity exhibited by purified enzyme preparations in the presence of FMN and NADPH. The observed activation and alteration of Chromatographic behavior of chorismate synthase by FMN suggest that the flavin nucleotide influences the conformation of the enzyme. The ability to replace NADPH and FMN with dithionite suggests that FMN mediates the flow of electrons from a source of reducing power (NADPH) to some enzymic site important to the function of the enzyme. Hence, the diaphorase activity which is observed as intrinsic to chorismate synthase of N. crassa may be significant from the standpoint of catalysis or may have importance as a regulatory mechanism.  相似文献   

3.
A flavoenzyme which showed NADPH-cytochrome c reductase (NADPH-cytochrome c oxidoreductase EC 1.6.2.4) and transhydrogenase (NADPH-NAD+ oxidoreductase, EC 1.6.1.1) activities was purified to an electrophoretically homogeneous state from Nitrobacter winogradskyi. The reductase was a flavoprotein which contained one FAD per molecule but no FMN. The oxidized form of the enzyme showed absorption maxima at 272, 375 and 459 nm with a shoulder at 490 nm, its molecular weight was estimated to be 36,000 by SDS polyacrylamide gel electrophoresis, and the enzyme seemed to exist as a dimer in aqueous solution. The enzyme catalyzed reduction of cytochrome c, DCIP and benzylviologen by NADPH, oxidation of NADPH with menadione and duroquinone, and showed transhydrogenase activity. NADH was less effective than NADPH as the electron donor in the reactions catalyzed by the enzyme. The NADPH-reduction catalyzed by the enzyme of N. winogradskyi cytochrome c-550 and horse cytochrome c was stimulated by spinach ferredoxin. The enzyme reduced NADP+ with reduced spinach ferredoxin and benzylviologen radical.Abbreviations DCIP dichlorophenolindophenol - Tris trishydroxy-methylaminomethane - Mops 3-(N-morpholino) propanesulfonic acid - SDS sodium dodecylsufate  相似文献   

4.
Nitrate reductase (NADPH:nitrate oxidoreductase; EC 1.6.6.1-3) was purified to apparent homogeneity from mycelium of Penicillium chrysogenum. The final preparation catalyzed the NADPH-dependent, FAD-mediated reduction of nitrate with a specific activity of 170-225 units X mg of protein-1. Gel filtration and glycerol density centrifugation yielded, respectively, a Stokes radius of 6.3 nm and an s20,w of 7.4. The molecular weight was calculated to be 199,000. On sodium dodecyl sulfate gels, the enzyme displayed two almost contiguous dye-staining bands corresponding to molecular weights of about 97,000 and 98,000. The enzyme prefers NADPH to NADH (kspec ratio = 2813), FAD to FMN (kspec ratio = 141), FAD (+ NADPH) to FADH2 (kspec ratio = 12,000), and nitrate to chlorate (kspec ratio = 4.33), where the kspec (the specificity constant for a given substrate) represents Vmax/Km. The Penicillium enzyme will also catalyze te NADPH-dependent, FAD-mediated reduction of cytochrome c with a specific activity of 647 units X mg of protein-1 (Kmcyt = 1.25 X 10(-5) M), and the reduced methyl viologen (MVH2, i.e. methyl viologen + dithionite)-dependent, NADPH and FAD-independent reduction of nitrate with a specific activity of 250 units X mg of protein-1 kmMVH2 = 3.5 X 10(-6) M). Initial velocity studies showed intersecting NADPH-FAD and nitrate-FAD reciprocal plot patterns. The NADPH-nitrate pattern was a series of parallel lines at saturating and unsaturating FAD levels. NADP+ was competitive with NADPH, uncompetitive with nitrate (at saturating and unsaturating FAD levels), and a mixed-type inhibitor with respect to FAD. Nitrite was competitive with nitrate, uncompetitive with NADPH (at saturating and unsaturating FAD levels), and a mixed-type inhibitor with respect to FAD. At unsaturating nitrate and FAD, NADPH exhibited substrate inhibition, perhaps as a result of binding to the FAD site(s). At very low FAD concentrations, low concentrations of NADP+ activated the reaction slightly. The initial velocity and product inhibition patterns are consistent with either of the two kinetic mechanisms. One (rather unlikely) mechanism involves the rapid equilibrium random binding of all ligands with (a) NADP+ and NADPH mutually exclusive, (b) nitrate and nitrite mutually exclusive, (c) the binding of NADPH strongly inhibiting the binding of nitrate and vice versa, (d) the binding of NADPH strongly promoting the binding of nitrite and vice versa, and (e) the binding of nitrate strongly promoting the binding of NADP+ and vice versa...  相似文献   

5.
1. The respiratory nitrate reductase of Klebsiella aerogenes was solubilized from the bacterial membranes by deoxycholate and purified further by means of gel chromatography in the presence of deoxycholate, and anion-exchange chromatography. 2. Dependent on the isolation procedure two different homogeneous forms of the enzyme, having different subunit compositions, can be obtained. These forms are designated nitrate reductase I and nitrate reductase II. Both enzyme preparations are isolated as tetramers having sedimentation constants (s20,w) of 22.1 S and 21.7 S for nitrate reductase I and II, respectively. The nitrate reductase I tetramer has a molecular weight of about 106. 3. In the presence of deoxycholate both enzyme preparations dissociate reversibly into their respective monomeric forms. The monomeric form of nitrate reductase I has a molecular weight of about 260 000 and a sedimentation constant of 9.8 S. For nitrate reductase II these values are 180 000 and 8.5 S, respectively. 4. Nitrate reductase I consists of three different subunits, having molecular weights of 117 000; 57 000 and 52 000, which are present in a 1:1:2 molar ratio, respectively. Nitrate reductase II contains only the subunits with a molecular weight of 117 000 and 57 000 in a equimolar ratio. 5. Treatment at pH 9.5 in the presence of deoxycholate and 0.05 M NaCl or ageing removes the 52 000 Mr subunit from nitrate reductase I. This smallest subunit, in contrast to the other subunits, is a basic protein. 6. The 52 000 Mr subunit has no catalytic function in the intramolecular electron transfer from reduced benzylviologen to nitrate. However, it appears to have a structural function since nitrate reductase II, which lacks this subunit, is much more labile than nitrate reductase I. Inactivation of nitrate reductase II can be prevented by the presence of deoxycholate. 7. The spectrum of the enzyme resembles that of iron-sulfur proteins. No cytochromes or contaminating enzyme activities are present in the purified enzyme. Only reduced benzylviologen was found to be capable of acting as an electron donor. 8. p-Chlormercuribenzoate enhances the enzymatic activity at concentrations of 0.1 mM and lower. At higher p-chlormercuribenzoate concentrations the enzymatic activity is inhibited non-competitively with either nitrate or benzylviologen as a substrate. The inhibition is not counteracted by cysteine.  相似文献   

6.
Pyridine nucleotide specificity of barley nitrate reductase   总被引:6,自引:4,他引:2       下载免费PDF全文
Dailey FA  Kuo T  Warner RL 《Plant physiology》1982,69(5):1196-1199
NADPH nitrate reductase activity in higher plants has been attributed to the presence of NAD(P)H bispecific nitrate reductases and to the presence of phosphatases capable of hydrolyzing NADPH to NADH. To determine which of these conditions exist in barley (Hordeum vulgare L. cv. Steptoe), we characterized the NADH and NADPH nitrate reductase activities in crude and affinity-chromatography-purified enzyme preparations. The pH optima were 7.5 for NADH and 6 to 6.5 for the NADPH nitrate reductase activities. The ratio of NADPH to NADH nitrate reductase activities was much greater in crude extracts than it was in a purified enzyme preparation. However, this difference was eliminated when the NADPH assays were conducted in the presence of lactate dehydrogenase and pyruvate to eliminate NADH competitively. The addition of lactate dehydrogenase and pyruvate to NADPH nitrate reductase assay media eliminated 80 to 95% of the NADPH nitrate reductase activity in crude extracts. These results suggest that a substantial portion of the NADPH nitrate reductase activity in barley crude extracts results from enzyme(s) capable of converting NADPH to NADH. This conversion may be due to a phosphatase, since phosphate and fluoride inhibited NADPH nitrate reductase activity to a greater extent than the NADH activity. The NADPH activity of the purified nitrate reductase appears to be an inherent property of the barley enzyme, because it was not affected by lactate dehydrogenase and pyruvate. Furthermore, inorganic phosphate did not accumulate in the assay media, indicating that NADPH was not converted to NADH. The wild type barley nitrate reductase is a NADH-specific enzyme with a slight capacity to use NADPH.  相似文献   

7.
A soluble nitrate reductase from the bacterium Acinetobacter calcoaceticus grown on nitrate has been characterized. The reduction of nitrate to nitrite is mediated by an enzyme of 96000 molecular weight that can use as electron donors either viologen dyes chemically reduced with dithionite or enzymatically reduced with NAD(P)H, through specific diaphorases which utilize viologens as electron acceptors. Nitrate reductase activity is molybdenum-dependent as shown by tungstate antagonistic experiments and is sensitive to -SH reagents and metal chelators such as KCN.The enzyme synthesis is repressed by ammonia. Moreover, nitrate reductase activity undergoes a quick inactivation either by dithionite and temperature or by dithionite in the presence of small amounts of nitrate. Cyanate prevents this inactivating process and can restore the activity once the inactivation had occurred, thus suggesting that an interconversion mechanism may participate in the regulation of Acinetobacter nitrate reductase.Abbreviations EDTA ethylenediaminetetraacetate - BV benzyl viologen - MV methyl viologen - MW molecular weight - NEM N-ethylmaleimide - p-HMB p-hydroxymercuribenzoate - DCPIP 2,6-dichlorophenol-indophenol - FMN flavin mononucleotide - FAD flavin adenine dinucleotide - KCNO potassium cyanate  相似文献   

8.
Some characteristics of nitrate reductase from higher plants   总被引:45,自引:28,他引:17       下载免费PDF全文
With respect to cofactor requirements, NADH, and FMNH2 were equally effective as electron donors for nitrate reductase obtained from leaves of maize, marrow, and spinach, when the cofactors were supplied in optimal concentrations. The concentration of FMNH2 required to obtain half-maximal activity was from 40- to 100-fold higher than for NADH. For maximal activity with the corn enzyme, 0.8 millimolar FMNH2 was required. In contrast, NADPH was functional only when supplied with NADP:reductase and exogenous FMN (enzymatic generation of FMNH2).

All attempts to separate the NADH2- and FMNH2-dependent nitrate reductase activities were unsuccessful and regardless of cofactor used equal activities were obtained, if cofactor concentration was optimal. Unity of NADH to FMNH2 activities were obtained during: A) purification procedures (4 step, 30-fold); B) induction of nitrate reductase in corn seedlings with nitrate; and C) inactivation of nitrate reductase in intact or excised corn seedlings. The NADH- and FMNH2-dependent activities were not additive.

A half-life for nitrate reductase of approximately 4 hours was estimated from the inactivation studies with excised corn seedlings. Similar half-life values were obtained when seedlings were incubated at 35° in a medium containing nitrate and cycloheximide (to inhibit protein synthesis), or when both nitrate and cycloheximide were omitted.

In those instances where NADH activity but not FMNH2 activity was lost due to treatment (temperature, removal of sulfhydryl agents, addition of p-chloromercuribenzoate), the loss could be explained by inactivation of the sulfhydryl group (s) required for NADH activity. This was verified by reactivation with exogenous cysteine.

Based on these current findings, and previous work, it is concluded that nitrate reductase is a single moiety with the ability to utilize either NADH or FMNH2 as cofactor. However the high concentration of FMNH2 required for optimal activity suggests that in vivo NADH is the electron donor and that nitrate reductase in higher plants should be designated NADH:nitrate reductase (E.C. 1.6.6.1).

  相似文献   

9.
Preliminary work revealed that nitrate reductase in crude extracts prepared from leaves of certain corn genotypes as well as soybeans could utilize NADPH as well as NADH as the electron donor. Isoelectric focusing and diethylaminoethyl cellulose chromatography confirmed previous findings that NADH and NADPH activities could not be separated, which suggests the involvement of a single enzyme. Nitrate reduction with both cofactors varies with plant species, plant age, and assay conditions. The ability of the nitrate reductase from a given genotype to utilize NADPH was associated with the amount of NADPH-phosphatase in the extract. While diethylaminoethyl cellulose chromatography of plant extracts separated nitrate reductase from the bulk (90%) of the phosphatase and caused a decrease in the NADPH activity, the residual level of phosphatase was sufficient to account for the apparent NADPH nitrate reductase activity. Addition of KH2PO4 and KF, inhibitors of NADPH-phosphatase activity in in vitro assays, caused a drastic reduction or abolishment of NADPH-mediated nitrate reductase activity but were without effect on NADH nitrate reductase activity. It is concluded that NADPH-nitrate reduction, in soybean and certain corn genotypes, is an artifact resulting from the conversion of NADPH to NADH by a phosphatase and that the enzyme in leaf tissue is NADH-dependent (E.C.1.6.6.1).  相似文献   

10.
In the absence of NADH, at 25 degrees C, partially purified NADH:nitrate reductase undergoes an approximately 50% reduction of its initial activity during 2 h. With the increase of inactivation, the NADH and nitrite concentration time curves become typical "sigmoidal," i.e. the reaction velocity of the nitrate reductase catalyzed reaction goes through a maximum before equilibrium is reached. About 80% of the original activity of nitrate reductase is restored when the enzyme is incubated for 2 min with 200 microM NADH or NADPH. Also other NADH substrate analogues have similar effects in restoring the lost activity. After incubation with the reduced pyridine nucleotides, the sigmoidal appearance of the NADH concentration time curve disappears almost completely. Despite the fact that NADPH increases the activity of the enzyme, NADPH does not show any competition with the NADH-binding site of nitrate reductase and does not produce nitrite in the absence of NADH. It is therefore concluded that there must be an additional allosteric site which binds either NADH or NADPH, or other pyridine nucleotides with the effect of increasing the activity of the enzyme. A kinetic model is presented which simulates the observed experimental findings.  相似文献   

11.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

12.
Nitrate reductase (NADH: nitrate oxidoreductase, EC 1.6.6.1) of spinach ( Spinacia oleracea L.) leaves, inactivated in vitro by acetylene, was reactivated by irradiation with blue light. Red + infrared, green or white light of the same irradiance were less effective. The dehydrogenase activity of the nitrate reductase complex was not required for pliotoreactivation. Photoreactivation of cyanide-inactivated nitrate reductase was greatly enhanced by the addition of 1 and 20 μ of either FMN or FAD; however, flavins showed a much smaller stimulatory effect on photoreactivation of acetylene-inactivated enzyme. The effect of flavins was higher under anaerobic conditions. This might imply the direct ievolvement of excited flavins in the photoreactivation mechanism. Besides promoting photoreactivation, blue light irradiation led simultaneously to a gradual inactivation of the enzyme especially under air and 20 μ FMN, eventually abolishing the recovered activity of the enzyme.  相似文献   

13.
NADPH-cytochrome P-450 (cytochrome c) reductase (EC 1.6.2.4) was solubilized by detergent from microsomal fraction of wounded Jerusalem-artichoke (Helianthus tuberosus L.) tubers and purified to electrophoretic homogeneity. The purification was achieved by two anion-exchange columns and by affinity chromatography on 2',5'-bisphosphoadenosine-Sepharose 4B. An Mr value of 82,000 was obtained by SDS/polyacrylamide-gel electrophoresis. The purified enzyme exhibited typical flavoprotein redox spectra and contained equimolar quantities of FAD and FMN. The purified enzyme followed Michaelis-Menten kinetics with Km values of 20 microM for NADPH and 6.3 microM for cytochrome c. In contrast, with NADH as substrate this enzyme exhibited biphasic kinetics with Km values ranging from 46 microM to 54 mM. Substrate saturation curves as a function of NADPH at fixed concentration of cytochrome c are compatible with a sequential type of substrate-addition mechanism. The enzyme was able to reconstitute cinnamate 4-hydroxylase activity when associated with partially purified tuber cytochrome P-450 and dilauroyl phosphatidylcholine in the presence of NADPH. Rabbit antibodies directed against plant NADPH-cytochrome c reductase affected only weakly NADH-sustained reduction of cytochrome c, but inhibited strongly NADPH-cytochrome c reductase and NADPH- or NADH-dependent cinnamate hydroxylase activities from Jerusalem-artichoke microsomal fraction.  相似文献   

14.
NADPH-cytochrome c reductase was purified to electrophoretic homogeneity from detergent solubilized sheep lung microsomes. The specific activity of the purified enzyme ranged from 56 to 67 mumol cytochrome c reduced/min/mg protein and the yield was 48-52% of the initial activity in lung microsomes. The reductase had Mr of 78,000 and contained 1 mol each of FAD and FMN. Km values obtained in 0.3 M phosphate buffer, pH 7.8 at 37 degrees C for NADPH and cytochrome c were 11.1 +/- 0.70 microM and 20.0 +/- 2.15 microM. Lung reductase was inhibited by its substrate, cytochrome c when its concentration was above 160 microM. The lung reductase exhibited a ping-pong type kinetic mechanism for NADPH mediated cytochrome c reduction. Purified lung reductase was biocatalytically active in supporting benzo(a)pyrene hydroxylation reaction when coupled with lung cytochrome P-450 and lipid.  相似文献   

15.
Hydrosulfite-reduced FMN served as an electron donor for nitratereductase purified from broad bean leaves. FMN was successfullyreplaced with BV. The flavine nucleotide nitrate reductase hadits pH optima at about 7.8 with phosphate buffer and at about7.4 with Tris-HCl buffer. The Km's for nitrate and FMN were3.7 ? 10–4 M and 3.7 ? 10–5 M, respectively. NADH2: nitrate reductase activity was completely inhibited by0.1 mM p-CMB, whereas FMNH2: nitrate reductase activity wasnot. Inhibited activity was restored by the addition of cysteine.A sulfhydryl enzyme is involved in the NADH2: nitrate reductasesystem but not in the FMNH2 : nitrate reductase system. NADH2and FMNH2 probably feed electrons into the electron transportchain at different sites. The nitrate reductase preparationhad an NADH2-specific diaphorase activity which was almost completelyinhibited by 0.1 mM p-CMB. The NADH2-specific diaphorase mayform the sulfhydryl enzyme which mediates electron transferbetween NADH2 and nitrate. (Received May 6, 1969; )  相似文献   

16.
1. NADPH-cytochrome c reductase was solubilized with bromelain and purified about 400-fold from sucrose/pyrophosphate-washed microsomal fractions from southern armyworm (Spodoptera eridania) larval midguts. 2. The enzyme has a mol.wt. of 70 035 +/- 1300 and contained 2 mol of flavin/mol of enzyme consisting of almost equimolar amounts of FMN and FAD. 3. Aerobic titration of the enzyme with NADPH caused the formation of a stable half-reduced state at 0.5 mol of NADPH/mol of flavin. 4. Kinetic analysis showed that the reduction of cytochrome c proceeded by a Bi Bi Ping Pong mechanism. 5. Apparent Km values for NADPH and cytochrome c and Ki values for NADP+ and 2'-AMP were considerably higher for the insect reductase than for the mammalian liver enzyme. 6. These are discussed in relation to possible differences in the active sites of the enzymes.  相似文献   

17.
The assimilatory NADPH-nitrate reductase (NADPH:nitrate oxidoreductase, EC 1.6.6.3) from Neurospora crassa is competitively inhibited by 3-aminopyridine adenine dinucleotide (AAD) and 3-aminopyridine adenine dinucleotide phosphate (AADP) which are structural analogs of NAD and NADP, respectively. The amino group of the pyridine ring of AAD(P) can react with nitrous acid to yield the diazonium derivative which may covalently bind at the NAD(P) site. As a result of covalent attachment, diazotized AAD(P) causes time-dependent irreversible inactivation of nitrate reductase. However, only the NADPH-dependent activities of the nitrate reductase, i.e. the overall NADPH-nitrate reductase and the NADPH-cytochrome c reductase activities, are inactivated. The reduced methyl viologen- and reduced FAD-nitrate reductase activities which do not utilize NADPH are not inhibited. This inactivation by diazotized AADP is prevented by 1 mM NADP. The inclusion of 1 muM FAD can also prevent inactivation, but the FAD effect differs from the NADP protection in that even after removal of the exogenous FAD by extensive dialysis or Sephadex G-25 filtration chromatography, the enzyme is still protected against inactivation. The FAD-generated protected form of nitrate reductase could again be inactivated if the enzyme was treated with NADPH, dialyzed to remove the NADPH, and then exposed to diazotized AADP. When NADP was substituted for NADPH in this experiment, the enzyme remained in the FAD-protected state. Difference spectra of the inactivated nitrate reductase demonstrated the presence of bound AADP, and titration of the sulfhydryl groups of the inactivated enzyme revealed that a loss of accessible sulfhydryls had occurred. The hypothesis generated by these experiments is that diazotized AADP binds at the NADPH site on nitrate reductase and reacts with a functional sulfhydryl at the site. FAD protects the enzyme against inactivation by modifying the sulfhydryl. Since NADPH reverses this protection, it appears the modifications occurring are oxidation-reduction reactions. On the basis of these results, the physiological electron flow in the nitrate reductase is postulated to be from NADPH via sulfhydryls to FAD and then the remainder of the electron carriers as follows: NADPH leads to -SH leads to FAD leads to cytochrome b-557 leads to Mo leads to NO-3.  相似文献   

18.
Bromphenol blue, which was reduced with dithionite, was found to support nitrate reduction catalyzed by squash NADH:nitrate reductase at a rate about 5 times greater than NADH with freshly prepared enzyme and 10 times or more with enzyme having been frozen and thawed. Kinetic analysis of bromphenol blue as a substrate for squash nitrate reductase yielded apparent Km values of 60 micromolar for bromphenol blue at 10 millimolar nitrate and 500 micromolar for nitrate at 0.2 millimolar bromphenol blue. With the same preparation of enzyme the apparent Km values were 9 micromolar for NADH at 10 millimolar nitrate and 50 micromolar nitrate at 0.1 millimolar NADH. Bromphenol blue was found to be a noncompetitive inhibitor versus NADH with a Ki of 0.3 millimolar. When squash NADH:nitrate reductase activity was inactivated with p-hydroxymercuribenzoate or denatured by heating at 40°C, the bromphenol blue nitrate reductase activity was not lost. These results were taken to indicate that bromphenol blue and NADH donated electrons to nitrate reductase at different sites. When monoclonal antibodies prepared against corn and squash nitrate reductases were used to inhibit the nitrate reductase activities supported by NADH, bromphenol blue, and methyl viologen, differential inhibition was found which tended to indicate that the three electron donors were interacting with the enzyme at different sites. One monoclonal antibody prepared against squash nitrate reductase inhibited all three activities of both corn and squash nitrate reductase. It appears this antibody may bind to a highly conserved antigenic site in the nitrate binding region of the enzyme.  相似文献   

19.
Nitric oxide synthase (NOS) is composed of an oxygenase domain and a reductase domain. The reductase domain has NADPH, FAD, and FMN binding sites. Wild-type nNOS reduced the azo bond of methyl red with a turnover number of approximately 130 min(-1) in the presence of Ca(2+)/calmodulin (CaM) and NADPH under anaerobic conditions. Diphenyleneiodonium chloride (DPI), a flavin/NADPH binding inhibitor, completely inhibited azo reduction. The omission of Ca(2+)/CaM from the reaction system decreased the activity to 5%. The rate of the azo reduction with an FMN-deficient mutant was also 5% that of the wild type. NADPH oxidation rates for the wild-type and mutant enzymes were well coupled with azo reduction. Thus, we suggest that electrons delivered from the FMN of the nNOS enzyme reduce the azo bond of methyl red and that this reductase activity is controlled by Ca(2+)/CaM.  相似文献   

20.
Induction and Repression of Nitrate Reductase in Neurospora crassa   总被引:7,自引:4,他引:3       下载免费PDF全文
Synthesis of wild-type Neurospora crassa assimilatory nitrate reductase is induced in the presence of nitrate ions and repressed in the presence of ammonium ions. Effects of several Neurospora mutations on the regulation of this enzyme are shown: (i) the mutants, nit-1 and nit-3, involving separate lesions, lack reduced nicotinamide adenine dinucleotide (NADPH)-nitrate reductase activity and at least one of three other activities associated with the wild-type enzyme. The two mutants do not require the presence of nitrate for induction of their aberrant nitrate reductases and are constitutive for their component nitrate reductase activities in the absence of ammonium ions. (ii) An analog of the wild-type enzyme (similar to the nit-1 enzyme) is formed when wild type is grown in a medium in which molybdenum has been replaced by vanadium or tungsten; the resulting enzyme lacks NADPH-nitrate reductase activity. Unlike nit-1, wild type produced this analog only in the presence of nitrate. Contaminating nitrate does not appear to be responsible for the observed mutants' activities. Nitrate reductase is proposed to be autoregulated. (iii) Mutants (am) lacking NADPH-dependent glutamate dehydrogenase activity partially escape ammonium repression of nitrate reductase. The presence of nitrate is required for the enzyme's induction. (iv) A double mutant, nit-1 am-2, proved to be an ideal test system to study the repressive effects of nitrogen-containing metabolites on the induction of nitrate reductase activity. The double mutant does not require nitrate for induction of nitrate reductase, and synthesis of the enzyme is not repressed by the presence of high concentrations of ammonium ions. It is, however, repressed by the presence of any one of six amino acids. Nitrogen metabolites (other than ammonium) appear to be responsible for the mediation of "ammonium repression."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号