首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, the field of chiral ionic liquids (CILs) has undergone exponential growth. As the technology has advanced, new ways of synthesizing stable and structurally diverse ionic liquids have been established. This has led to heretofore unknown applications of CILs as well as in improving efficiency of previously identified applications. In this review article we have compiled a comprehensive database containing structures and physical properties of notable CILs that have been synthesized during the last 6 years. Their applications in the fields of asymmetric organic synthesis, spectroscopy, and chromatography are also illustrated. This is an expansion of our previous review, which covered the literature before 2005.  相似文献   

2.
Zhao Q  Twu P  Anderson JL 《Chirality》2012,24(3):201-208
Ionic liquids (ILs) have been widely used as reaction solvents in asymmetric synthesis due to their interesting physical and chemical properties. However, monitoring reactant-to-product conversion and the enantiopurity of formed stereoisomers often involves a tedious extraction step before chromatographic analysis. In this study, a rapid and sensitive sampling method using headspace solid-phase microextraction (SPME) coupled to chiral gas chromatography was developed for the "on-line" analysis of chiral molecules in the IL solvent. Three different SPME sorbent coatings, namely polydimethylsiloxane, polyacrylate, and a polymeric ionic liquid-based fiber, were examined in this study. The analytical performance of the developed method was evaluated in terms of reproducibility, slope of calibration curve, linear range, calibration linearity, and the determination of detection limits. The SPME method was successfully applied in the determination of enantiomeric excess from selected mixtures of chiral molecules. A preliminary study was performed using an "on-fiber" derivatization approach revealing that the stereoisomers extracted by the SPME fiber can be efficiently derivatized using a short "on-fiber" derivatization step. The developed SPME method eliminates the need of sequestering the reaction, separating the compounds of interest from the IL solvent, and the addition of a derivatizing reagent.  相似文献   

3.
New chiral bis and mono-imidazolium ionic liquids derived from isomannide were synthesized. The structural features of the chiral organic cations impart a special arrangement of the chiral cavity. The new chiral chloride salts of isomannide derivatives are pivotal compounds for the synthesis of different organic ionic liquids. After metathesis different anions were associated to the chiral cations providing a new class of chiral ionic liquids.  相似文献   

4.
Enzyme catalysis in ionic liquids   总被引:15,自引:0,他引:15  
Ionic liquids offer new possibilities for the application of solvent engineering to biocatalytic reactions. Although in many cases ionic liquids have simply been used to replace organic solvents, they have often led to improved process performance. Unlike conventional organic solvents, ionic liquids possess no vapor pressure, are able to dissolve many compounds, and can be used to form two-phase systems with many solvents. To date, reactions involving lipases have benefited most from the use of ionic liquids, but the use of ionic liquids with other enzymes and in whole-cell processes has also been described. In some cases, remarkable results with respect to yield, (enantio)selectivity or enzyme stability were observed.  相似文献   

5.
Flurbiprofen is a kind of nonsteroidal anti‐inflammatory drug, which has been widely used in clinic for treatment of rheumatoid arthritis and osteoarthritis. It has been reported that S‐flurbiprofen shows good performance on clinic anti‐inflammatory treatment, while R‐enantiomer almost has no pharmacological activities. It has important practical values to obtain optically pure S‐flurbiprofen. In this work, chiral ionic liquids, which have good structural designability and chiral recognize ability, were selected as the extraction selector by the assistance of quantum chemistry calculations. The distribution behaviors of flurbiprofen enantiomers were investigated in the extraction system, which was composed of organic solvent and aqueous phase containing chiral ionic liquid. The results show that maximum enantioselectivity up to 1.20 was attained at pH 2.0, 25°C using 1,2‐dichloroethane as organic solvent, 1‐butyl‐3‐methylimidazole L‐tryptophan ([Bmim][L‐trp]) as chiral selector. The racemic flurbiprofen initial concentration was 0.2 mmol L?1, and [Bmim][L‐trp] concentration was 0.02 mol L?1. Furthermore, the recycle of chiral ionic liquids has been achieved by reverse extraction process of the aqueous phase with chiral selector, which is significant for industrial application of chiral ionic liquids and scale‐up of the extraction process.  相似文献   

6.
The enantiomeric excess of chiral starting materials is one of the important factors determining the enantiopurity of products in asymmetric synthesis. Fifty‐one commercially available chiral reagents used as building blocks, catalysts, and auxiliaries in various enantioselective syntheses were assayed for their enantiomeric purity. The test results were classified within five impurities level (ie, <0.01%, 0.01%‐0.1%, 0.1%‐1%, 1%‐10%, >10%). Previously from 1998 to 2013, several reports have been published on the enantiomeric composition of more than 300 chiral reagents. This series of papers is necessitated by the fact that new reagents are forthcoming and that the enantiomeric purity of the same reagent can vary from batch to batch and/or from supplier to supplier. This report presents chiral liquid chromatography (LC) and gas chromatography (GC) methods to separate enantiomers of chiral compounds and evaluate their enantiomeric purities. The accurate and efficient LC analysis was done using newly introduced superficially porous particle (SPP 2.7 μm) based chiral stationary phases (TeicoShell, VancoShell, LarihcShell‐P, and NicoShell).  相似文献   

7.
Much attention has been paid to chiral ionic liquids (ILs) in analytical chemistry, especially its application in capillary electrophoresis (CE) enantioseparation. However, the investigation of chiral ionic liquids synergistic systems based on antibiotic chiral selectors has been reported in only one article. In this work, a novel chiral ionic liquid, tetramethylammonium‐L‐hydroxyproline (TMA‐L‐Hyp), was applied for the first time in CE chiral separation to evaluate its potential synergistic effect with clindamycin phosphate (CP) as the chiral selector. As observed, significantly improved separation was obtained in this TMA‐L‐Hyp/CP synergistic system compared to TMA‐L‐Hyp or a CP single system. Several primary factors that might influence the separation were investigated, including CP concentration, TMA‐L‐Hyp concentration, buffer pH, types and concentrations of organic modifier, applied voltage, and capillary temperature. The best results were obtained with a 40 mM borax buffer (pH 7.6) containing 30 mM TMA‐L‐Hyp, 80 mM CP, and 20% (v/v) methanol, while the applied voltage and temperature were set at 20 kV and 20°C, respectively. Chirality 27:598–604, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Nucleoside chemistry represents an important research area for drug discovery, as many nucleoside analogs are prominent drugs and have been widely applied for cancer and viral chemotherapy. However, the synthesis of modified nucleosides presents a major challenge, which is further aggravated by poor solubility of these compounds in common organic solvents. Most of the currently available methods for nucleoside modification employ toxic high boiling solvents; require long reaction time and tedious workup methods. As such, there is constant effort to develop process chemistry in alternative medium to limit the use of organic solvents that are hazardous to the environment and can be deleterious to human health. One such approach is to use ionic liquids, which are ‘designer materials’ with unique and tunable physico-chemical properties. Studies have shown that methodologies using ionic liquids are highly efficient and convenient for the synthesis of nucleoside analogs, as demonstrated by the preparation of pharmaceutically important anti-viral drugs. This article summarizes recent efforts on nucleoside modification using ionic liquids.  相似文献   

9.
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.  相似文献   

10.
We report the synthesis and characterization of amino acid ester based chiral ionic liquids, derived from L- and D-alanine tert butyl ester chloride. The synthesis was accomplished via an anion metathesis reaction between commercially available L- and D-alanine tert butyl ester chloride using a variety of counterions such as lithium bis (trifluoromethane) sulfonimide, silver nitrate, silver lactate, and silver tetrafluoroborate. Both enantiomeric forms were obtained as confirmed by bands of opposite sign in the circular dichroism spectra. The L- and D-alanine tert butyl ester bis (trifluoromethane) sulfonimide were obtained as liquids at room temperature and intriguingly exhibited the highest thermal stability (up to 263 degrees C). In addition, the ionic liquids demonstrated enantiomeric recognition ability as evidenced by splitting of racemic Mosher's sodium salt signal using a liquid state (19)F nuclear magnetic resonance (NMR) and fluorescence spectroscopy. The L- and D-alanine tert butyl ester chloride resulted in solid salts with nitrate, lactate, and tetrafluoroborate anions. This illustrates the previously observed tunability of ionic liquid synthesis, resulting in ionic liquids of varying properties as a function of varying the anion.  相似文献   

11.
Biocatalysis in ionic liquids - advantages beyond green technology   总被引:12,自引:0,他引:12  
In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation.  相似文献   

12.
The effect of the media (achiral and chiral ionic liquids) on the stereochemistry of intramolecular 1,3-dipolar cycloaddition reactions of D-galactose-derived ω-unsaturated nitrones, leading to bicyclic isoxazolidines, has been investigated.  相似文献   

13.
The effect of the media (achiral and chiral ionic liquids) on the stereochemistry of intramolecular 1,3-dipolar cycloaddition reactions of D-galactose-derived omega-unsaturated nitrones, leading to bicyclic isoxazolidines, has been investigated.  相似文献   

14.
The tremendous potential of room temperature ionic liquids as an alternative to environmentally harmful ordinary organic solvents is well recognized. Ionic liquids, having no measurable vapor pressure, are an interesting class of tunable and designer solvents, and they have been used extensively in a wide range of applications including enzymatic biotransformation. In fact, ionic liquids can be designed with different cation and anion combinations, which allow the possibility of tailoring reaction solvents with specific desired properties, and these unconventional solvent properties of ionic liquids provide the opportunity to carry out many important biocatalytic reactions that are impossible in traditional solvents. As compared to those observed in conventional organic solvents, the use of enzymes in ionic liquids has presented many advantages such as high conversion rates, high enantioselectivity, better enzyme stability, as well as better recoverability and recyclability. To date, a wide range of pronounced approaches have been taken to further improve the performance of enzymes in ionic liquids. This review presents the recent technological developments in which the advantages of ionic liquids as a medium for enzymes have been gradually realized.  相似文献   

15.
We report the synthesis of a series of novel structurally related protic chiral ionic liquids (PCILs) derived from ephedrines. Enantiopure norephedrine, ephedrine, and methylephedrine were neutralized by use of fluorinated acids, bis(trifluoromethanesulfonyl)imide, and bis(pentafluoroethanesulfonyl)imide to afford six PCILs with protonated primary, secondary, and tertiary amines. The goal of this study is to investigate the influence of structure on both chiral recognition abilities and physicochemical properties of these closely related PCILs. The newly synthesized PCILs were characterized by use of nuclear magnetic resonance (NMR), thermal gravimetric analysis, differential scanning calorimetry, circular dichroism (CD), mass spectrometry, and elemental analysis. The PCILs were thermally stable up to 220°C and had glass transition temperatures between -60 and -30°C. Both enantiomers of the PCILs retained chirality throughout the synthesis as demonstrated by use of CD measurements. More interestingly, these ephedrinium PCILs displayed strong chiral recognition capabilities as evidenced by peak splitting of the chemical shift of the trifluoro group of potassium Mosher's salt by use of (19)F-NMR. In addition, these PCILs demonstrated enantiomeric recognition capabilities toward a range of structurally diverse analytes using steady-state fluorescence spectroscopy.  相似文献   

16.
Biocatalytic transformations in ionic liquids   总被引:19,自引:0,他引:19  
Room temperature ionic liquids are non-volatile, thermally stable and highly polar; they are also moderately hydrophilic solvents. Here, we discuss their use as reaction media for biocatalysis. Enzymes of widely diverging types are catalytically active in ionic liquids or aqueous biphasic ionic liquid systems. Lipases, in particular, maintain their activity in anhydrous ionic liquid media; the (enantio)selectivity and operational stability are often better than in traditional media. The unconventional solvent properties of ionic liquids have been exploited in biocatalyst recycling and product recovery schemes that are not feasible with traditional solvent systems.  相似文献   

17.
The synthesis of 4,6-O-benzylidenated monosaccharides and disaccharides has been studied using ionic liquids as a unique solvent alternative. An examination of several imidazolium ionic liquids indicates that the benzylidenation of hexopyranosides in 3-butyl-1-methylimidazolium tetrafluoroborate, [bmim]BF4, gives the highest yields for most of the substrates, and that this solvent system could be readily recycled.  相似文献   

18.
The use of a biocompatible water-immiscible organic phase as a substrate and product pool has been acknowledged as an effective tool to overcome the low volumetric productivity of aqueous bioconversion systems involving hydrophobic compounds. The growing environmental and public health awareness is nevertheless leading to restrictions in the use of organic solvents in industrial processes, in order to render these more environmentally friendly. Different approaches are hence being assessed for the design of alternative bioconversion media, involving the use of supercritical fluids, ionic liquids and natural oils and liquid polymers, among others.  相似文献   

19.
Chiral ionic liquids hold promise in many asymmetric applications. This study explores the impact of ionic solutes on the chiral discrimination of five amino acid methyl ester‐based ionic liquids, including L‐ and D‐alanine methyl ester, L‐proline methyl ester, L‐leucine methyl ester, and L‐valine methyl ester cations combined with bis(trifluoromethanesulfonimide) anion. Circularly polarized luminescence spectroscopy was used to study the chiral discrimination by measuring the racemization equilibrium of a dissymmetric europium complex, Eu(dpa)33? (where dpa = 2,6‐pyridinedicarboxylate). The chiral discrimination measured was dependent on the concentration of Eu(dpa)33? and this concentration‐dependence was different in each of the ionic liquids. Ionic liquids with L‐leucine methyl ester and L‐valine methyl ester even switched enantiomeric preference based on the solute concentration. Changing the cation of the Eu(dpa)33? salt from tetrabutylammonium to tetramethylammonium ion also affected the chiral discrimination demonstrated by the ionic liquids. Chirality 27:320–325, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Chiroptical spectroscopic methods serve as a practical tool for the structural characterization of chiral systems based on the interaction with polarized light. The higher sensitivity of these methods, compared with their achiral counterparts, not only enables the determination of absolute configuration and conformational preferences, but also supramolecular interactions may be monitored. In order to expand the applicability of chiroptical systems, the development of functional materials exhibiting intense chiroptical responses is essential. As a proof of principle, we previously constructed chiroptical interfaces via thioacetate-derivatized allenes. Because of the photoisomerization issues associated with allenes, we have recently proposed their replacement by spirobifluorenes to achieve robust chiroptical systems. Thus, we hereby present the design and synthesis of chiral spirobifluorenes bearing thioacetates suitable for suface functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号