首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiamine pyrophosphate is an essential cofactor that is synthesized de novo in Salmonella typhimurium. The biochemical steps and gene products involved in the conversion of aminoimidazole ribotide (AIR), a purine intermediate, to the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine have yet to be elucidated. We have isolated mutations in a new locus (Escherichia coli open reading frame designation yojK) at 49 min on the S. typhimurium chromosome. Two significant phenotypes associated with lesions in this locus (apbE) were identified. First, apbE purF double mutants require thiamine, specifically the HMP moiety. Second, in the presence of adenine, apbE single mutants require thiamine, specifically both the HMP and the thiazole moieties. Together, the phenotypes associated with apbE mutants suggest that flux through the purine pathway has a role in regulating synthesis of the thiazole moiety of thiamine and are consistent with ApbE being involved in the conversion of AIR to HMP. The product of the apbE gene was found to be a 36-kDa membrane-associated lipoprotein, making it the second membrane protein implicated in thiamine synthesis.  相似文献   

2.
We report the recovery of a nuclear recessive mutation in Nicotiana sylvestris (Spegazzini and Comes) producing a conditional disruption in the pathway for synthesis of chlorophyll a and b and carotenoids which is fully reversible by exogenous thiamine (0.3 micromolar). In the absence of supplemental thiamine, chlorophyll levels declined by 50% after 5 days, and fell to undetectable levels by 11 days. Mitochondrial (KCN sensitive) respiration rates remained normal in albino leaves (80% loss of chlorophyll), suggesting that chlorosis results primarily from a deficiency of thiamine in the chloroplasts. After thiamine removal, mutant plants produced at least 10 albino leaves with a substantial capacity for growth (0-15 centimeters; 70-fold increase in area), demonstrating sustained operation of many cellular functions in spite of chloroplast disruption. Activities of the plastid isozymes of phosphoglucomutase and phosphoglucoisomerase in albino leaves indicated that the decline in pigment synthesis does not result from a general loss of metabolic activity in chloroplast. Plastid pyruvate dehydrogenase from mutant and wild-type plants displayed a similar affinity for thiamine pyrophosphate, showing that chlorosis does not result from an alteration in this enzyme. Growth of albino leaves and ultrastructural evidence for thylakoid membranes in the chloroplasts suggest that a certain level of fatty acid synthesis is maintained after the interruption of pigment synthesis. Since thiamine deprivation is expected to block production of acetyl-coenzyme A from pyruvate by pyruvate dehydrogenase, acetyl-coenzyme A supporting fatty acid synthesis in albino leaves may be derived solely from mitochondrial acetate.  相似文献   

3.
Genetic analyses have suggested that the pyrimidine moiety of thiamine can be synthesized independently of the first enzyme of de novo purine synthesis, phosphoribosylpyrophosphate amidotransferase (PurF), in Salmonella typhimurium. To obtain biochemical evidence for and to further define this proposed synthesis, stable isotope labeling experiments were performed with two compounds, [2-13C]glycine and [13C]formate. These compounds are normally incorporated into thiamine pyrophosphate (TPP) via steps in the purine pathway subsequent to PurF. Gas chromatography-mass spectrometry analyses indicated that both of these compounds were incorporated into the pyrimidine moiety of TPP in a purF mutant. This result clearly demonstrated that the pyrimidine moiety of thiamine was being synthesized in the absence of the PurF enzyme and strongly suggested that this synthesis utilized subsequent enzymes of the purine pathway. These results were consistent with an alternative route to TPP that bypassed only the first enzyme in the purine pathway. Experiments quantitating cellular thiamine monophosphate (TMP) and TPP levels suggested that the alternative route to TPP did not function at the same capacity as the characterized pathway and determined that levels of TMP and TPP in the wild-type strain were significantly altered by the presence of purines in the medium.  相似文献   

4.
Phosphoribosyl amine (PRA) is an intermediate in purine biosynthesis and also required for thiamine biosynthesis in Salmonella enterica. PRA is normally synthesized by phosphoribosyl pyrophosphate amidotransferase, a high-turnover enzyme of the purine biosynthetic pathway encoded by purF. However, PurF-independent PRA synthesis has been observed in strains having different genetic backgrounds and growing under diverse conditions. Genetic analysis has shown that the anthranilate synthase-phosphoribosyltransferase (AS-PRT) enzyme complex, involved in the synthesis of tryptophan, can play a role in the synthesis of PRA. This work describes the in vitro synthesis of PRA in the presence of the purified components of the AS-PRT complex. Results from in vitro assays and in vivo studies indicate that the cellular accumulation of phosphoribosyl anthranilate can result in nonenzymatic PRA formation sufficient for thiamine synthesis. These studies have uncovered a mechanism used by cells to redistribute metabolites to ensure thiamine synthesis and may define a general paradigm of metabolic robustness.  相似文献   

5.
To investigate the effect of increased plastid transketolase on photosynthetic capacity and growth, tobacco (Nicotiana tabacum) plants with increased levels of transketolase protein were produced. This was achieved using a cassette composed of a full-length Arabidopsis thaliana transketolase cDNA under the control of the cauliflower mosaic virus 35S promoter. The results revealed a major and unexpected effect of plastid transketolase overexpression as the transgenic tobacco plants exhibited a slow-growth phenotype and chlorotic phenotype. These phenotypes were complemented by germinating the seeds of transketolase-overexpressing lines in media containing either thiamine pyrophosphate or thiamine. Thiamine levels in the seeds and cotyledons were lower in transketolase-overexpressing lines than in wild-type plants. When transketolase-overexpressing plants were supplemented with thiamine or thiamine pyrophosphate throughout the life cycle, they grew normally and the seed produced from these plants generated plants that did not have a growth or chlorotic phenotype. Our results reveal the crucial importance of the level of transketolase activity to provide the precursor for synthesis of intermediates and to enable plants to produce thiamine and thiamine pyrophosphate for growth and development. The mechanism determining transketolase protein levels remains to be elucidated, but the data presented provide evidence that this may contribute to the complex regulatory mechanisms maintaining thiamine homeostasis in plants.  相似文献   

6.

Background

Thiamine availability is involved in glycolytic flux and fermentation efficiency. A deficiency of this vitamin may be responsible for sluggish fermentations in wine making. Therefore, both thiamine uptake and de novo synthesis could have key roles in fermentation processes. Thiamine biosynthesis is regulated in response to thiamine availability and is coordinated by the thiamine sensor Thi3p, which activates Pdc2p and Thi2p. We used a genetic approach to identify quantitative trait loci (QTLs) in wine yeast and we discovered that a set of thiamine genes displayed expression-QTL on a common locus, which contains the thiamine regulator THI3.

Results

We deciphered here the source of these regulatory variations of the THI and PDC genes. We showed that alteration of THI3 results in reduced expression of the genes involved in thiamine biosynthesis (THI11/12/13 and THI74) and increased expression of the pyruvate decarboxylase gene PDC1. Functional analysis of the allelic effect of THI3 confirmed the control of the THI and PDC1 genes. We observed, however, only a small effect of the THI3 on fermentation kinetics. We demonstrated that the expression levels of several THI genes are correlated with fermentation rate, suggesting that decarboxylation activity could drive gene expression through a modulation of thiamine content. Our data also reveals a new role of Thi3p in the regulation of the main pyruvate decarboxylase gene, PDC1.

Conclusions

This highlights a switch from PDC1 to PDC5 gene expression during thiamine deficiency, which may improve the thiamine affinity or conservation during the enzymatic reaction. In addition, we observed that the lab allele of THI3 and of the thiamin transporter THI7 have diverged from the original alleles, consistent with an adaptation of lab strains to rich media containing an excess of thiamine.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1085) contains supplementary material, which is available to authorized users.  相似文献   

7.
In the biocontrol strain Pseudomonas fluorescens CHA0, the Gac/Rsm signal transduction pathway positively controls the synthesis of antifungal secondary metabolites and exoenzymes. In this way, the GacS/GacA two-component system determines the expression of three small regulatory RNAs (RsmX, RsmY, and RsmZ) in a process activated by the strain's own signal molecules, which are not related to N-acyl-homoserine lactones. Transposon Tn5 was used to isolate P. fluorescens CHA0 insertion mutants that expressed an rsmZ-gfp fusion at reduced levels. Five of these mutants were gacS negative, and in them the gacS mutation could be complemented for exoproduct and signal synthesis by the gacS wild-type allele. Furthermore, two thiamine-auxotrophic (thiC) mutants that exhibited decreased signal synthesis in the presence of 5 × 10−8 M thiamine were found. Under these conditions, a thiC mutant grew normally but showed reduced expression of the three small RNAs, the exoprotease AprA, and the antibiotic 2,4-diacetylphloroglucinol. In a gnotobiotic system, a thiC mutant was impaired for biological control of Pythium ultimum on cress. Addition of excess exogenous thiamine restored all deficiencies of the mutant. Thus, thiamine appears to be an important factor in the expression of biological control by P. fluorescens.  相似文献   

8.
The transport of thiamine and 4-methyl-5-hydroxyethylthiazole (MHET), its thiazole moiety, was studied using whole cells of Salmonella typhimurium. It was found that the bacteria possessed an active transport system for thiamine that had Km 0.21 μM and Vmax 33 nmol·min?1·(mg dry wt. cells)?1. Transport of thiamine was glucose dependent, whereas MHET uptake was dependent on both glucose and 2-methyl-4-amino-5-hydroxymethylpyrimidine (MAHMP), the pyrimidine moiety of thiamine. Uptake of both thiamine and MHET was severely curtailed by cyanide, azide, N-ethylmaleimide and carbonyl cyanide m-chlorophenylhydrazone. Oxythiamine inhibited thiamine, but not MHET, uptake and thiamine slightly inhibited MHET uptake. 2-Methyl-4-amino-5-methoxymethylpyrimidine and 4-amino-5-hydroxymethylpyrimidine were unable to replace MAHMP as stimulators of MHET uptake, but 2-methyl-4-amino-5-aminomethylpyrimidine was marginally effective in this regard. Similar results were obtained with attempts to replace MAHMP as a growth requirement for a purD mutant of Salmonella typhimurium. MHET uptake showed saturation kinetics only in the presence of MAHMP, and is not otherwise actively transported.  相似文献   

9.
In the yeast Dipodascus magnusii, which is auxotrophic for thiamine and biotin, during cultivation on glucose with excessive thiamine concentration, pyruvate metabolism was shown to result in the synthesis of fermentation products, namely, ethanol and, to a lesser extent, lactate. Substantial synthesis of ethyl acetate was also observed under these conditions. Introduction of nicotinic acid (NA) into the medium resulted in time separation of ethanol and lactate production. It was shown that cultivation of the yeast under biotin deficiency resulted in nearly complete suppression of aerobic production of ethanol and cessation of ethyl acetate synthesis, whereas lactate synthesis was activated as early as in the first hours of cultivation. Upon introduction of NA under these conditions, lactate concentration sharply increased. These results show that the combination of thiamine and biotin with other vitamins can stimulate utilization of the pyruvate pool in yeasts towards formation of considerable amounts of lactate, which is typical only of cells of higher eukaryotes and bacteria.  相似文献   

10.
11.
Abstract— Cultured glial (C-6) and neuronal (neuroblastoma) cells were utilized to define the role of thiamine in the regulation of fatty acid and cholesterol biosynthesis. Glial cells subjected to thiamine deficiency exhibited rates of fatty acid synthesis that were only 13% of the rates in thiamine-supple-mented cells. The decrease in fatty acid synthetic rate was accompanied by a comparable decrease in the activities of fatty acid synthetase and acetyl-CoA carboxylase, the two critical enzymes in the pathway. Immunochemical techniques demonstrated that the decrease in activity of fatty acid synthetase reflected a decrease in enzyme content and that this change in content was caused by a decrease in enzyme synthesis. The disturbance of fatty acid synthesis was exquisitely sensitive to thiamine–i.e. marked improvement was evident within hours of replenishment with only 0.01 μ/ml of thiamine. Total recovery occurred in 1–2 days. Thiamine-deficient glia also exhibited reduced rates of cholesterol biosynthesis, i.e. 60% of the rates in thiamine-supplemented cells. This effect was accompanied by a comparable reduction in activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting step in cholesterol biosynthesis. Unlike the glial cells, the neuronal cells exhibited either no or only a slight reduction in lipid synthesis under similar conditions of thiamine deficiency. The data have important implications for the genesis of the neuropathology in states of altered thiamine homeostasis and for the mechanisms of regulation of lipid synthesis.  相似文献   

12.
Li SL  Redei GP 《Plant physiology》1969,44(2):225-229
All mutants at 3 loci in Arabidopsis thaliana (L.) Heynh., a higher plant, that are associated with the synthesis or coupling of the thiazole moiety of thiamine are susceptible to reversible glucose inhibition. In contrast, several different alleles involved in the synthesis of the pyrimidine moiety of the vitamin are insensitive to glucose. Glucose and maltose are equally effective inhibitors while fructose, lactose, ribose, and xylose are toxic. This toxicity is not released by added thiamine.  相似文献   

13.
H Sanemori  Y Egi    T Kawasaki 《Journal of bacteriology》1976,126(3):1030-1036
The pathway of thiamine pyrophosphate (TPP) biosynthesis, which is formed either from exogeneously added thiamine or from the pyrimidine and thiazole moieties of thiamine, in Micrococcus denitrificans was investigated. The following indirect evidence shows that thiamine pyrophosphokinase (EC 2.7.6.2) catalyzes the synthesis of TPP from thiamine: (i) [35S]thiamine incubated with cells of this microorganism was detected in the form of [35S]thiamine; (ii) thiamine gave a much faster rate of TPP synthesis than thiamine monophosphate (TMP) when determined with the extracts; and (iii) a partially purified preparation of the extracts can use thiamine, but not TMP, as the substrate. The activities of the four enzymes involved in TMP synthesis from pyrimidine and thiazole moieties of thiamine were detected in the extracts of M. denitrificans. The extracts contained a high activity of the phosphatase, probably specific for TMP. After M. denitrificans cells were grown on a minimal medium containing 3 mM adenosine, which causes derepression of de novo thiamine biosynthesis in Escherichia coli, the activities of the four enzymes involved with TMP synthesis, the TMP phosphatase, and the thiamine pyrophosphokinase were enhanced two- to threefold. These results indicate that TPP is synthesized directly from thiamine without forming TMP as an intermediate and that de novo synthesis of TPP from the pyrimidine and thiazole moieties involves the formation of TMP, followed by hydrolysis to thiamine, which is then converted to TPP directly. Thus, the pathway of TPP synthesis from TMP synthesized de novo in M. denitrificans is different from that found in E. coli, in which TMP synthesized de novo is converted directly to TPP without producing thiamine.  相似文献   

14.
Thiamine deficiency provides an effective model of selective neuronal cell death. 1H and 13C-NMR was used to investigate the effects of thiamine deficiency on the synthesis of amino acids derived from [1-13C]glucose in vulnerable (medial thalamus; MT) compared to non-vulnerable (frontal cortex; FC) brain regions. Following 11 days of thiamine deficiency, a time-point associated with the absence of significant neuronal cell death, regional concentrations of glutamate, glutamine and GABA remained unaffected in FC and MT; however, decreased levels of aspartate in MT at this time-point were a predictor of regional vulnerability. De novo synthesis of glutamate and GABA were unaffected at 11 days of thiamine deficiency, while synthesis of [2-13C]aspartate was significantly impaired. Glucose loading, which has been shown to exacerbate symptoms in patients with thiamine deficiency, resulted in further decreases of TCA cycle flux and reduced de novo synthesis of glutamate, aspartate and GABA in thiamine-deficient (TD) rats. Isotopomer analysis revealed that impaired TCA cycle flux and decreased aspartate synthesis due to thiamine deficiency occurred principally in neurons. Glucose loading deteriorated TD-related decreases in TCA cycle flux, and concomitantly reduced synthesis of aspartate and glutamate in MT.  相似文献   

15.
A newly synthesized photoreactive thiamine derivative, 4-azido-2-nitrobenzoylthiamine was found to be a competitive inhibitor of the thiamine transport system in Saccharomyces cerevisiae, exhibiting an apparent Ki of 36 nM. When exposed to visible light, 4-azido-2-nitrobenzoylthiamine irreversibly inactivated the thiamine transport. 4-azido-2-nitrobenzoylthiamine-dependent photoinactivation of thiamine transport was partially protected by thiamine, but not by the nitrene-trapping reagent p-aminobenzoate. On the other hand, the irradiation of the yeast cells in the presence of 4-azido-2-nitrobenzoylthiamine did not significantly lead to inactivation of the biotin transport system. The results suggest that 4-azido-2-nitrobenzoylthiamine is a specific irreversible inhibitor of the thiamine transport system in Saccharomyces cerevisiae.  相似文献   

16.
The effect of kinetin on the de novo formation of thiamine in tobacco callus cultures was measured by following the isotope dilution of previously introduced (14)C-thiamine. Thiamine was determined by the thiochrome fluorescence assay after chromatographic purification.Morphological effects induced by high kinetin concentrations were visible within a week after tissue transfer, but thiamine synthesis was insignificant for 2 weeks both in cultures with high (1000 mug/l) and low (30 mug/l) kinetin treatments. Thiamine synthesis during the third week was observed at both kinetin levels, the high kinetin treatment supporting 2.5 times the thiamine synthesis of the low kinetin treatment. The kinetin induced increases in thiamine observed earlier by Digby and Skoog apparently resulted from stimulation of thiamine synthesis rather than from sparing its destruction. Thiamine synthesis is initiated when thiamine concentration reaches a minimum in the callus tissue. This suggests that kinetin is required for the synthesis, but that the activation of synthesis is under feedback control sensitive to the level of thiamine in the tissue.  相似文献   

17.
18.
In animals, thiamine deficiency leads to specific brain lesions, generally attributed to decreased levels of thiamine diphosphate, an essential cofactor in brain energy metabolism. However, another far less abundant derivative, thiamine triphosphate (ThTP), may also have a neuronal function. Here, we show that in the rat brain, ThTP is essentially present and synthesized in mitochondria. In mitochondrial preparations from brain (but not liver), ThTP can be produced from thiamine diphosphate and Pi. This endergonic process is coupled to the oxidation of succinate or NADH through the respiratory chain but cannot be energized by ATP hydrolysis. ThTP synthesis is strongly inhibited by respiratory chain inhibitors, such as myxothiazol and inhibitors of the H+ channel of F0F1-ATPase. It is also impaired by disruption of the mitochondria or by depolarization of the inner membrane (by protonophores or valinomycin), indicating that a proton-motive force (Δp) is required. Collapsing Δp after ThTP synthesis causes its rapid disappearance, suggesting that both synthesis and hydrolysis are catalyzed by a reversible H+-translocating ThTP synthase. The synthesized ThTP can be released from mitochondria in the presence of external Pi. However, ThTP probably does not accumulate in the cytoplasm in vivo, because it is not detected in the cytosolic fraction obtained from a brain homogenate. Our results show for the first time that a high energy triphosphate compound other than ATP can be produced by a chemiosmotic type of mechanism. This might shed a new light on our understanding of the mechanisms of thiamine deficiency-induced brain lesions.  相似文献   

19.
We identified a strain carrying a recessive constitutive mutation (thi80-1) with an altered thiamine transport system, thiamine-repressible acid phosphatase, and several enzymes of thiamine synthesis from 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-beta-hydroxyethylthiazole. The mutant shows markedly reduced activity of thiamine pyrophosphokinase (EC 2.7.6.2) and high resistance to oxythiamine, a thiamine antagonist whose potency depends on thiamine pyrophosphokinase activity. The intracellular thiamine pyrophosphate content of the mutant cells grown with exogenous thiamine (2 x 10(-7) M) was found to be about half that of the wild-type strain under the same conditions. These results suggest that the utilization and synthesis of thiamine in Saccharomyces cerevisiae is controlled negatively by the intracellular thiamine pyrophosphate level.  相似文献   

20.
Studies on ATP     
The experiments described in this paper serve as a contribution to the solution of the discrepancies which exist in the assay of ATP:thiamine diphosphate phosphotransferase activity (EC 2.7.4.15), presently in use as a tool for the diagnosis of Leigh's disease (SNE, subacute necrotizing encephalomyelopathy). The results obtained with this phosphotransferase assay can, in part, be explained by the presence of thiamine triphosphate (ThTP) in the preparation of thiamine diphosphate (ThDP) used as a substrate, by the inhibition by ATP of the ThTP phosphohydrolase activity, present in fractions of rat brain homogenates, and by the stimulation by ThDP of the ATPase activity. When [2-14C-thiazole]thiamine was used for the synthesis of [14C]ThTP in fractions of rat brain, it was found that after chromatographic separation of thiamine and its phosphates,14C radio-activity could be demonstrated in the ThTP fractions, even in the absence of an enzyme source. Probably a complex is formed between [14C]thiamine and a phosphate ester which behaves chromatographically as ThTP. It is concluded that the assay system for the measurement of ThTP synthesis in its present form is, in our hands, not suitable for diagnostic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号