首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The RAD52 and RAD54 genes in the yeast Saccharomyces cerevisiae are involved in both DNA repair and DNA recombination. RAD54 has recently been shown to be inducible by X-rays, while RAD52 is not. To further investigate the regulation of these genes, we constructed gene fusions using 5' regions upstream of the RAD52 and RAD54 genes and a 3'-terminal fragment of the Escherichia coli beta-galactosidase gene. Yeast transformants with either an integrated or an autonomously replicating plasmid containing these fusions expressed beta-galactosidase activity constitutively. In addition, the RAD54 gene fusion was inducible in both haploid and diploid cells in response to the DNA-damaging agents X-rays, UV light, and methyl methanesulfonate, but not in response to heat shock. The RAD52-lacZ gene fusion showed little or no induction in response to X-ray or UV radiation nor methyl methanesulfonate. Typical induction levels for RAD54 in cells exposed to such agents were from 3- to 12-fold, in good agreement with previous mRNA analyses. When MATa cells were arrested in G1 with alpha-factor, RAD54 was still inducible after DNA damage, indicating that the observed induction is independent of the cell cycle. Using a yeast vector containing the EcoRI structural gene fused to the GAL1 promoter, we showed that double-strand breaks alone are sufficient in vivo for induction of RAD54.  相似文献   

2.
3.
4.
The role of cis- and trans-acting elements in the expression of HIS4 has been examined by using HIS4-lacZ fusions in which lacZ expression is dependent upon the HIS4 5' noncoding region. The cis-acting sequences involved in regulation were defined by studying the effects of the wild-type and various deletions and their revertants on regulation via the general control of amino acid biosynthesis. The role of trans-acting genes was analyzed by studying the regulation of the HIS4-lacZ fusions in strains carrying mutations in the GCN (AAS) or GCD (TRA) genes and in strains carrying the GCN genes on high-copy-number plasmids. These studies have led to the following conclusions. (i) HIS4 is positively regulated by the general control. (ii) At least one copy of the 5'TGACTC3' repeat at -136 is required in cis for this regulation. (iii) Both the GCN4 gene and at least one copy of the repeated sequence are required for expression at the repressed level. (iv) The open reading frames in the 5' noncoding region are not required in either cis or trans for the regulation of HIS4.  相似文献   

5.
We have mutated various features of the 5' noncoding region of the HIS4 mRNA in light of established Saccharomyces cerevisiae and mammalian consensus translational initiator regions. Our analysis indicates that insertion mutations that introduce G + C-rich sequences in the leader, particularly those that result in stable stem-loop structures in the 5' noncoding region of the HIS4 message, severely affect translation initiation. Mutations that alter the length of the HIS4 leader from 115 to 39 nucleotides had no effect on expression, and sequence context changes both 5' and 3' to the HIS4 AUG start codon resulted in no more than a twofold decrease of expression. Changing the normal context at HIS4 5'-AAUAAUGG-3' to the optimal sequence context proposed for mammalian initiator regions 5'-CACCAUGG-3' did not result in stimulation of HIS4 expression. These studies, in conjunction with comparative and genetic studies in S. cerevisiae, support a general mechanism of initiation of protein synthesis as proposed by the ribosomal scanning model.  相似文献   

6.
Expression of Ty-lacZ fusions in Saccharomyces cerevisiae   总被引:6,自引:4,他引:2       下载免费PDF全文
We have determined the nucleotide sequence of about 520 bp spanning the 5' delta regions (Figure 1) of two Tyl elements. There is an open reading frame running out of the deltas for at least 180 nucleotides into the internal region of each element. The functional significance of these open reading frames has been tested by fusing them to a defective E.coli lacZ gene. Expression of B-galactosidase in yeast transformants containing these fusions shows that Tyl elements contain functional translation signals.  相似文献   

7.
Regulation of thiamine biosynthesis in Saccharomyces cerevisiae.   总被引:5,自引:3,他引:2       下载免费PDF全文
A pho6 mutant of Saccharomyces cerevisiae, lacking a regulatory gene for the synthesis of periplasmic thiamine-repressible acid phosphatase activity, was found to be auxotrophic for thiamine. The activities of four enzymes involved in the synthesis of thiamine monophosphate were hardly detectable in the crude extract from the pho6 mutant. On the other hand, the activities of these enzymes and thiamine-repressible acid phosphatase in a wild-type strain of S. cerevisiae, H42, decreased with the increase in the concentration of thiamine in yeast cells. These results suggest that thiamine synthesis in S. cerevisiae is subject to a positive regulatory gene, PHO6, whereas it is controlled negatively by the intracellular thiamine level.  相似文献   

8.
Regulation of thiamine transport in Saccharomyces cerevisiae.   总被引:3,自引:3,他引:0       下载免费PDF全文
Yeast cells were found to be repressed for the uptake of both thiamine and pyrithiamine by growth with exogenous thiamine, and they appeared to regulate the activity of the binding protein for these compounds.  相似文献   

9.
Retrotransposons are a widely distributed group of eukaryotic mobile genetic elements that transpose through an RNA intermediate. The element Ty (Transposon yeast), found in the yeast Saccharomyces cerevisiae, is a model system for the study of retrotransposons because of the experimental tools that exist to manipulate and detect transposition. Ty transposition can be elevated to levels exceeding one transposition event per cell when an element is expressed from an inducible yeast promoter. In addition, individual genomic Ty elements can be tagged with a retrotransposition indicator gene that allows transposition events occurring at a rate of 10(-5) to 10(-7) per element per cell division to be detected phenotypically. These systems are being used to elucidate the mechanism of Ty transposition and clarify how Ty transposition is controlled.  相似文献   

10.
Macroautophagy (hereafter autophagy) is a cellular degradation process, which in yeast is induced in response to nutrient deprivation. In this process, a double-membrane vesicle, an autophagosome, surrounds part of the cytoplasm and fuses with the vacuole to allow the breakdown and subsequent recycling of the cargo. In yeast, many autophagy-related (ATG) genes have been identified that are required for selective and/or nonselective autophagy. In all autophagy-related pathways, core Atg proteins are required for the formation of the autophagosome, which is one of the most unique aspects of autophagy and is unlike other vesicle transport events. In contrast to nonselective autophagy, the selective processes are induced in response to various specific physiological conditions such as alterations in the carbon source. In this review, we provide an overview of the common aspects concerning the mechanism of autophagy-related pathways, and highlight recent advances in our understanding of the machinery that controls autophagy induction in response to nutrient starvation conditions.  相似文献   

11.
Acetyl-coenzyme A synthetase (EC 6.2.1.1) activity of Saccharomyces cerevisiae was determined by a radioactive assay procedure. The activity in vitro was inhibited significantly by NADPH, NADH, or AMP and to a lesser extent by NADP, NAD, or ADP. Glutamic acid and alpha-ketoglutaric acid were not inhibitory. The enzyme level was repressed when the cells were grown in a complex nutrient medium as opposed to the minimal medium. However, a glutamic acid auxotroph glul, when grown in excess glutamic acid, demonstrated a fivefold increase of acetyl-CoA synthetase.  相似文献   

12.
The addition of ethanolamine or choline to inositol-containing growth medium resulted in a reduction of CTP:phosphatidate cytidylyltransferase (CDP-diacylglycerol synthase; EC 2.7.7.41) activity in Saccharomyces cerevisiae. The reduction of activity did not occur in the absence of inositol. CDP-diacylglycerol synthase activity was not regulated in a S. cerevisiae mutant strain (opi1; an inositol biosynthesis regulatory mutant) by the addition of phospholipid precursors to the growth medium.  相似文献   

13.
Using yeast strains with null mutations in structural genes which encode delta-aminolevulinic acid synthetase (HEM1), isozymes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG1 and HMG2), squalene epoxidase (ERG1), and fatty acid delta 9-desaturase (OLE1), we were able to determine the effect of hemes, sterols, and unsaturated fatty acids on both sterol production and the specific activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in Saccharomyces cerevisiae. We found that the HMGR isozymes direct essentially equal amounts of carbon to the biosynthesis of sterols under heme-competent conditions, despite a huge disparity (57-fold) in the specific activities of the reductases. Our results demonstrate that palmitoleic acid (16:1) acts as a rate-limiting positive regulator and that ergosterol acts as a potent inhibitor of sterol production in strains which possess only the HMGR1 isozyme (HMG1 hmg2). In strains which contain only the HMGR2 isozyme (hmg1 HMG2), sterol production was inhibited by oleic acid (18:1) and to a lesser degree by ergosterol. The specific activities of the two reductases (HMGR1 and HMGR2) were found to be differentially regulated by hemes but not by ergosterol, palmitoleic acid, or oleic acid. The disparate effects of unsaturated fatty acids and sterols on these strains lead us to consider the possibility of separate, compartmentalized isoprenoid pathways in S. cerevisiae.  相似文献   

14.
15.
The effects of growth phase and carbon source on membrane-associated phosphatidylinositol kinase in cell extracts of Saccharomyces cerevisiae were examined. Phosphatidylinositol kinase activity increased 2- and 2.5-fold in glucose- and glycerol-grown cells, respectively, in the stationary phase as compared with the exponential phase of growth. The increase in phosphatidylinositol kinase activity in the stationary phase of growth correlated with an increase in the relative amounts of phosphatidylinositol 4-phosphate, the product of the reaction. The increase in phosphatidylinositol kinase activity was not due to the presence of water-soluble effector molecules in cell extracts as indicated by mixing experiments. Phosphatidylinositol kinase activity decreased in cell extracts of exponential-phase cells preincubated under phosphorylation conditions which favor cyclic AMP-dependent protein kinase activity. Phosphatidylinositol kinase activity was not affected in cell extracts of stationary-phase cells preincubated under phosphorylation conditions.  相似文献   

16.
There are several kinds of regulation that enable microbes to cope with rapidly changing supplies of nutrients. This is exemplified by sugar metabolism in Saccharomyces cerevisiae. Some readily reversible controls affect the activity of enzymes, either by allosteric activation and deactivation, which often occur within seconds, or by covalent modification, within minutes. Other controls regulate the amount of enzyme present in the cells, either by irreversible proteolytic inactivation of the enzyme, or by influencing enzymic synthesis. The nomenclature of these processes is often confused.  相似文献   

17.
Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron   总被引:2,自引:0,他引:2  
  相似文献   

18.
All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment.IN addition to the major components of organic molecules, i.e., carbon, nitrogen, hydrogen, and oxygen, living organisms require multiple chemical elements, termed nutrient minerals, for growth. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions. Charged ions, which cannot diffuse across lipid bilayers, also provide the raw material to establish electrochemical gradients that drive cellular processes such as ATP synthesis. Potassium ions help balance negative charge inside cells and activate critical metabolic processes such as protein translation. Trace elements, such as zinc, copper, iron, and manganese, are critical determinants of protein structure and serve as essential enzyme cofactors. Calcium performs structural, enzymatic, and signaling roles within cells. All of these essential elements can also be toxic. Thus, cells must be able to acquire, utilize, and store nutrient minerals effectively, but have also developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Genetic studies in yeast have identified key components responsible for acquiring, utilizing, storing, and regulating levels of these ions. Furthermore, because many of these proteins are highly conserved, yeast serves as an excellent model to identify the corresponding machinery in humans and understand diseases that result from defects in ion homeostasis. A genome-wide study measured levels of 13 elements in >4000 yeast deletion strains grown in rich medium to establish the yeast “ionome.” Relatively few mutations (212) were found to significantly perturb the ionome, revealing that robust mechanisms exist to compensate for loss of a single component of ion homeostasis (Eide et al. 2005). However, the vast majority of the 212 mutations identified altered the level of more than one element, and subsets of elements covaried, illustrating the cooperative nature of the regulatory networks that control intracellular ion levels. These studies also highlighted the critical role that intracellular organelles, particularly the vacuole and the mitochondria, play in ion regulation.This chapter reviews our current understanding of how cation balance is achieved and regulated in baker’s yeast. Starting with monovalent cations and proceeding to divalent metal ions, the role of each cation is briefly reviewed, with particular emphasis on current knowledge of its uptake, storage, and efflux mechanisms. Where appropriate, roles for cation in signal transduction pathways are also discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号