首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

2.
Rotifers as predators on small ciliates   总被引:5,自引:5,他引:0  
Clearance rates of Synchaeta pectinata, Brachionus calyciflorus and Asplanchna girodi on Tetrahymena pyriformis (46 µm in length) at a density of 10 cells ml–1, in the presence of algal food, were 2.5 to 6.1 ml rot.–1 day–1. Clearance rates of these rotifers were, respectively, about 2, 3, and 13 times lower on Strobilidium gyrans (58 µm in length) than on T. pyriformis, indicating that the saltations of S. gyrans are an effective escape response. Clearance rates of S. pectinata were considerably lower on Colpidium striatum (81 µm) than on S. gyrans, suggesting that S. pectinata may not be able to ingest ciliates of this size. S. pectinata had a clearance rate of 19 ml rot.–1 day–1 on S. gyrans at a density of 1.2 cells ml–1, in the absence of edible algal food. Rotifers may prey extensively on ciliates in natural plankton communities, ingesting 25 to 50 individuals in the 45–60 µm size range day–1.  相似文献   

3.
AxenicTrentepohlia odorata was cultured at three different NH4Cl levels (3.5 × 10–2, 3.5 × 10–3, 3.5 × 10–4 M) and three different light intensities (48, 76, 122 µmol m–2 s–1). Chloride had no effect on growth over this range of concentration. High light intensity and high NH4Cl concentration enhanced the specific growth rate. The carotenoid content increased under a combination of high light intensity and low N concentration. WhenD. bardawil was exposed to the same combination of growth conditions, there was an increase in its carotenoid content. The light saturation and the light inhibition constants (K s andK i, respectively) for growth, and the saturation constant (K m) for NH4Cl were determined. TheK s andK i values were higher inT. odorata (66.7 and> 122 mol m–2 s–1, respectively) than inD. bardawil (5.1 and 14.7 µmol m–2 s–1, respectively). TheK m value determined at 122 µmol m–2 s–1, however, was lower inT. odorata (0.048 µM) than inD. bardawil (0.062 µM).Author for correspondence  相似文献   

4.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

5.
The effects of small-scale turbulence on two species of dinoflagellates were examined in cultures where the turbulent forces came randomly from all directions and were intermittent both spatially and temporally; much like small-scale turbulence in the ocean. With Lingulodinium polyedrum (Stein) Dodge (syn. Gonyaulax polyedra), division rate increased linearly (from 0.35 to 0.5 per day) and the mean cross-sectional area (CSA) decreased linearly (from 1100 to 750 μm2) as a function of the logarithmic increase in turbulence energy dissipation rate (). These effects were noted when values increased between 10−8 and 10−4 m2 s−3. However, when increased to 10−3 m2 s−3, division rate sharply decreased and mean CSA increased. Over the same range of , Alexandrium catenella (Wheedon and Kofoid) Balech had its division rate decrease linearly (from 0.6 to 0.45 per day) and its CSA increase linearly (from 560 to 650 μm2) as a function of the logarithmic increase in . Even at the highest examined (10−3 m2 s−3), which may be unrealistically high for their ambits, both L. polyedra and A. catenella still had fairly high division rates, 0.2 and 0.45 per day, respectively. Turbulence strongly affected chain formation in A. catenella. In non-turbulent cultures, the mode was single cells (80–90% of the population), but at of 10−5 to 10−4 m2 s−3, the mode was 8 cells per chain. At the highest (10−3 m2 s−3), the mode decreased to 4 cells per chain. The vertical distributions of A. catenella populations in relation to hydrographic flow fields were studied in the summers of 1997 and 1998 in East Sound, Washington, USA (latitude 48°39′N, 122°53′W). In both summers, high concentrations of A. catenella were found as a subsurface bloom in a narrow depth interval (2 m), where both current shear and turbulence intensity were at a minimum. Other researchers have shown that A. catenella orients its swimming in shear flows, and that swimming speed increases with chain length. These responses, when combined with our observations, support a hypothesis that A. catenella actively concentrates at depths with low turbulence and shear.  相似文献   

6.
An aerobiological study was performed to evaluate the potential exposure of animals and workers to dust constituents generated during routine animal house work. Different rooms of air conditioned (A, control) and passively ventilated (B, non-air conditioned) animal facilities were sampled, in order to evaluate total airborne culturable fungi and bacteria, fungal spore concentrations and particle levels. Airborne room particles were analyzed gravimetrically and for endotoxin content. All parameters, except for culturable fungi, were higher in facility B and statistically significant, with respect to those from the control facility A. Median values for airborne particle concentration, endotoxin and fungal spores in facility B were: 115 µg m–3, 25 EU m–3, and 2173 spores m–3, respectively. Median values for facility A were: 66 µg m–3, 9 EU m–3, and 248 fungal spores m–3. Broncheoalveolar lavage from rats kept in the rat room of B, presented median concentrations of total cells and lactate dehydrogenase, higher than those found in the control facility (4.4 × 105 vs. 1.1 × 105 and 2.7 UmL-1 vs. 0.39 UmL–1, respectively). Values of total and biological particles of both facilities, as well as the time spent in different rooms, showed that worker exposure was higher during cage washing. It was especially high in the passively ventilated facility (airborne particles 686 µg m–3 3.5 h–1 vs. 976 µg m–3 3.5 h–1, endotoxin 70 EU m–3 3.5 h–1 vs. 108 EU m–3 3.5 h–1). The type of basidiospores and ascospores found, as well as the significant correlation between particle levels and endotoxin contents suggests that wood chip bedding disturbance during cage washing is an important source for airborne biological particles. The changes in broncheoalveolar lavage components found in rats from these facilities and previously reported changes in pro-inflammatory cellular responses found in workers, indicate that these relatively low levels of exposure are enough to induce a biological response. Studies considering the composition of mixed organic dusts, would be needed to reevaluate current occupational standards.  相似文献   

7.
Clearance rates of sessile rotifers: in vitro determinations   总被引:1,自引:1,他引:0  
We measured laboratory clearance rates of 10 rotifer and one unidentified bryozoan species from 3 different lakes using 32P labeled algae (Chlamydomonas) or yeast (Rhodotorula). Clearance rates for all rotifers fed yeast ranged from < 2.0 to > 260 µl · animal–1 · h–1 depending on species. The in vitro clearance rates of two sessile rotifers (Ptygura crystallina and P. pilula) were not significantly different from previously measured in situ rates (Wallace and Starkweather 1983). Clearance rates for 5 rotifers fed algae ranged from < 5.0 to > 90.0 µl · animal–1 · h–1. Ptygura beauchampi, P. crystallina, P. pilula, Floscularia conifera, and F. melicerta ingested both cell types but their clearance rates varied substantially among species and between cell types. There was a substantial time-dependent loss of 32P from formalin-fixed animals (Sinantherina socialis) awaiting processing. This loss stabilized at approximately 20 hours and was estimated to be about 40% of the initial ingested label. Clearance rates for the bryozoan fed yeast or algae were highly variable, ranging from < 1.0 to > 3 000 µl · animal–1 · h–1.  相似文献   

8.
We investigated the environmental factors that affected temporal variability of eel recruitment and upstream migration in a freshwater coastal river along the southeastern US. Glass eels Anguilla rostrata were collected through ichthyoplankton sampling in the lower Roanoke River, North Carolina. Monthly samples were taken from fixed stations from May 2001 through June 2003. There was no evidence of consistent seasonal migration patterns for glass eels in Roanoke River. From May through December in 2001, glass eels were captured only during August. In 2002, glass eels arrived in February and remained in ichthyoplankton samples through October, with the exception of samples from September. Peak catch occurred in March at 4.02 ± 1.2 and declined through June to 0.18 ± 0.07 (#/1,000 m3). By August, the mean density increased to 0.96 ± 0.82 and to 3.59 ± 2.77 by October. In 2003 from January through June, glass eels were captured only during February and March. Glass eels were routinely collected when river discharge rates were <150 m3 s−1. River discharge rates >650 m−3 s−1 resulted in no glass eels in our samples. Upstream migration during 2002 was not correlated with water temperature or related to lunar phase. Glass eel freshwater upstream migration was initiated when water temperatures exceeded a threshold range of 10°C to 15°C; however, glass eels continued to migrate when water temperatures approached 30°C. The overall negative effect of river discharge suggests that changes in the water release schedules of upstream hydroelectric facilities during glass eel migration could strongly influence their recruitment success.  相似文献   

9.
We collected the ephemeral macrophyte Ruppia drepanensis Tin. ex Guss. from the athalassic shallow lake Fuente de Piedra (Málaga. Southern Spain). This lake, situated in an endorheic basin, shows great seasonal changes in depth and Total Dissolved Solids (TDS).Dissolved oxygen evolution studied in the laboratory at 17 different photon flux densities (PFD) showed a maximum rate of photosynthesis of 0.55 mg C g dry wt–1 h–1, a light compensation point at 86 µE m–2 s–1 and a saturation point at 333 µE m–2 s–1. A moderate photoinhibition (\ = 1.68 10–4) was found above 695 µE m–2 s–1.Estimates of pigment concentrations revealed 10 times more carotenoids than chlorophyll.The adaptation of the plants to high irradiances and to the particular features of their hypersaline environment are discussed.  相似文献   

10.
Two emergence trap designs were tested in Mono Lake, California, to measure in situ hatching of Artemia monica cysts on the lake bottom. One design incorporated a removable sample bottle; the other had a catch tube which was pumped from the surface. Both traps rested on the bottom and had a narrow gap between the collecting funnel and bottom flange to allow the chemical conditions within the trap to be similar to those outside. This gap was open during April and May but, because some animals entered from outside the area enclosed by the trap, the gap was covered with 400 µm or 800 µm screen during June and July. The two trap types without screens sampled a station in oxic water 7 m deep similarly in April and May 1985. Mean daily hatching rates from April to May 1985 ranged from 720 to 25 340 shrimp m-2 day-1. In contrast, mean daily hatching rates during the same period at a station in anoxic water 21 m deep were from 3 to 138 shrimp m-2 day-1. June and July hatching rates in the shallow station were lower than in the spring, usually less than 1000 shrimp m-2 day-1.  相似文献   

11.
Thermo-osmotic gas supply not detected in Avicennia marina seedlings   总被引:2,自引:0,他引:2  
Ethane was used as tracer gas to assess the likelihood of thermo-osmotically induced mass-flow in the aerenchyma of Avicennia marina seedlings without pneumatophores. Ethane movement was measured in darkness and with illumination at approximately 600 µ mol m–2s–1 provided to the leaves and stem, with the expectation that leaf warming under illumination would provide for thermo-osmotic flow. In some seedlings the flow increased with illumination, and in others it either decreased or remained unchanged. Overall, there was no statistically significant difference in the conductance to ethane between darkened illuminated plants, and the rates of ethane movement were consistent with an average diffusive conductance to oxygen down the stem of 0.22 × 10–19m3 s–1. it was concluded that there was no evidence for thermo-osmotically induced in this case.  相似文献   

12.
The epiphytic algae on surfaces of the macrophyte Ranunculus penicillatus (Dumort.) Bab. var. calcareus (R. W. Butcher) C. D. K. Cook and on Cladophora glomerata (L.) Kütz growing in the River Itchen at Otterbourne near Southampton were studied between February 1984 and June 1985. The river at this site has a mean flow rate of 0.33 m s–1, and is about 16 m wide and on average 20 cm deep, with a discharge ranging through the year between 0.34 and 2.46 m3 s–1. The pH of the river varies little around 8.2, with a mean alkalinity of 236 mg HCO inf3 sup1 l–1, because of its origin from chalk springs. Ranunculus grows throughout the year, with peaks of biomass in spring and autumn. It forms a very large surface for attachment of epiphytes, and covers on average 40% of the stream bed. Numbers of epiphyte cells removed from Ranunculus ranged through the year between 52 × 103 and 271 × 103 cells mm–2 stream floor, with maximum numbers in April, and a secondary peak in October. This pattern partly reflects fluctuations in the biomass of Ranunculus; the number of cells per unit area of plant surface showed a broader spring peak and lower fluctuations in other seasons. Diatoms formed 65 to 98% of these epiphyte cells, with chlorophytes reaching their peak (10%) in summer and cyanophytes (25%) in autumn. Estimates of biomass of these epiphytic forms, derived from measurements of chlorophyll c, indicate a range between 30 and 100 g dry weight m–2 of weed bed. Colonisation studies showed that the algae grow and reproduce throughout the year, with a mean generation time of about 5 days, suggesting an annual production of about 3 kg dry weight m–2 of weed bed, which makes epiphytic algae the principal primary producers in the stream. The numbers and biomass of epiphytic algae on Cladophora are considerably less.The species of epiphytic algae found on Ranunculus were generally similar to those growing on Cladophora, and to epilithic algae on pebbles of the stream bed, but different species were dominant on the different substrata. Algal cells in the water column were all derived from benthic habitats, although their relative abundance was very different.  相似文献   

13.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

14.
Direct observation was used to measure feeding rates of the flagellate Spumella on three sizes of bacteria plus 0.3 µm latex beads using video microscopy. Feeding rate was maximum on the intermediate-sized bacteria. Maximum ingestion rates (Im) for the large- (0.53 µm3), intermediate- (0.08 µm3) and small-sized (0.02 µm3) bacteria and 0.014 µm3 latex beads were 11, 38 and 14 bacteria and 9 beads flagellate–1 h–1, respectively. The growth rates of Spumella sp. feeding on monoxenic cultures of the large- vs. the intermediate-sized bacteria were indistinguishable but Spumella sp. could not sustain its population density when feeding on the small bacterium as the sole food source. Our data are consistent with the hypothesis that Spumella sp., and possibly other flagellate protozoa, tend to feed selectively on larger prey. One consequence of this hypothesis is that differential grazing by bactivores may select for small bacteria in natural waters.  相似文献   

15.
Sailaja  M.V.  Das  V.S. Rama 《Photosynthetica》2000,38(2):267-273
Photosynthetic acclimation to reduced growth irradiances (650 and 200 µmol m–2 s–1) in Eleusine coracana (L.) Garten, a nicotinamide adenine dinucleotide-malic enzyme (NAD-ME) C4 species and Gomphrena globosa L., a nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) C4 species were investigated. E. coracana plants acclimated in 4 and 8 d to 650 and 200 µmol m–2 s–1, respectively, whereas G. globosa plants took 8 and 10 d, respectively, to acclimate to the same irradiances. The acclimation to reduced irradiance was achieved in both species by greater partitioning of chlorophyll towards the light-harvesting antennae at the expense of functional components. However, magnitude of increase in the light-harvesting antenna was higher in E. coracana as compared to G. globosa. Superior photosynthetic acclimation to reduced irradiance in G. globosa was due to the smaller change in functions of the cytochrome b 6/f complex, photosystem (PS) 1 and PS2 leading to the higher carbon fixation rates compared to E. coracana.  相似文献   

16.
Rates of inorganic nitrogen uptake by three Northeast US and three Asian species of Porphyra were compared in short-term incubations to evaluate potential for longer term and larger scale examination of bioremediation of nutrient-loaded effluents from finfish aquaculture facilities. The effects of nitrogen (N) species and concentration, temperature, acclimation history, and irradiance were investigated. Uptake rates increased ca. nine-fold from 20 to 150 μM N. Nitrate and ammonium uptake occurred at similar rates. Irradiance had a strong effect, with uptake at 40 μmol photons m−2 s−1only 55% of uptake at 150 μmol photons m−2 s−1. N-replete tissue took up inorganic nitrogen at rates that averaged only 60% of nutrient-deprived tissue. Although there were species (P. amplissima > (P. purpurea = P. umbilicalis)) and temperature effects (10 °C>5 °C>15 °C), interactions among factors indicated that individual species be considered separately. Overall, P. amplissima was the best Northeast US candidate. It took up ammonium at faster rates than other local species at 10 and 15 °C, two temperatures that fall within the expected range of industrial conditions for finfish operations.  相似文献   

17.
An 8-year study was conducted on the island of Crete in order to identify airborne ascospores and to determine their seasonal pattern. A Burkard 7-day, volumetric spore-trap was continuously operated in the city of Irakleion – located in the center of the island – from 1994 through 2001. Relatively „high” ascospore counts (20 – 48 spores/m 3) were obtained from mid-spring through summer, while the rest of the year exhibited lower activity (8–16 spores/m3). The predominant ascospores identified were those of Leptosphaeria and Chaetomium; their concentrations varied from 1 or 2 spores up to a few dozens of spores/m3. Other spores encountered sporadically were: Ascobolus, Endophragmiella, Didymella, Diatrypaceae, Leptosphaerulina, Massaria, Pleospora, Sporormiella, Xylaria. The mean daily concentration of all identified ascospores was 30/m3 for the entire study period, corresponding to 13.9% of the total fungal load. Ascospores have been recognized as important inhalant allergens and have been implicated as contributing to symptoms of both rhinitis and asthma.  相似文献   

18.
Three eulittoral algae(Ulva lactuca, Porphyra umbilicalis, Chondrus crispus) and one sublittoral alga(Laminaria saccharina) from Helgoland (North Sea) were cultivated in a flow-through system at different temperatures, irradiances and daylengths. In regard to temperature there was a broad optimum at 10–15° C, except inP. umbilicalis, which grew fastest at 10 °C. A growth peak at this temperature was also found in four of 17 other North Sea macroalgae, for which the growth/temperature response was studied, whereas 13 of these species exhibited a growth optimum at 15 °C, or a broad optimum at 10–15 °C. Growth was light-saturated inU. lactuca, L. saccharina andC. crispus at photon flux densities above 70 µE m–2s–1, but inP. umbilicalis above 30 µE m–2s–1. Growth rate did not decrease notably in the eulittoral species after one week in relatively strong light (250 µE m–2s–1), but by about 50 % in the case of the sublittoralL. saccharina, as compared with growth under weak light conditions (30 µE m–2s–1). In contrast, chlorophyll content decreased in the sublittoral as well as in the eulittoral species, and the greatest change in pigment content occurred in the range 30–70 µE m–2s–1. Growth rate increased continuously up to photoperiods of 24 h light per day inL. saccharina andC. crispus, whereas daylength saturation occurred at photoperiods of more than 16 h light per day inU. lactuca andP. umbilicalis.  相似文献   

19.
D. lumholtzi in Lake Samsonvale, Queensland, Australia, is a small species (max. size approx. 7 µgC) that occurs in low abundance (max. abundance 6400 m–3), with an average daily biomass of 3.32 mgC m–3. Its annual rates of carbon assimilation, production and respiration, are 166, 110, and 56 mgC m–3 y–1 respectively. Annual biomass turnover (annual production/average daily biomass) is 33 and production efficiency is 50–66%. The population may consume 1.65–2.20 mgC m–3 daily, equivalent to about 1% of the average daily standing crop of phytoplankton. Clutch size is small, 2 eggs, but represents 30–80% of a female's weight. A female may only produce 8–10 offspring in a full lifespan, nevertheless egg production may account for 56% of total production. The population shows autumn and spring peaks in abundance, and is believed to oversummer (4 months) as ephippia.  相似文献   

20.
Gulati  R. D.  Ejsmont-Karabin  J.  Postema  G. 《Hydrobiologia》1993,255(1):269-274
Ingestion and assimilation rates of Euchlanis dilatata lucksiana Hauer, isolated from Lake Loosdrecht (The Netherlands) and cultured on lake water (seston < 33 µm), were measured in the laboratory using the 14C-tracer technique. The five taxa used as tracer foods, together with 6–7 mg C l–1 of lake seston in each case, included four species of filamentous cyanobacteria (Oscillatoria redekei, O. limnetica, Aphanizomenon flos-aquae, Anabaena PCC 7120) and a prochlorophyte (Prochlorothrix hollandica). Except Anabaena, they are all commonly encountered in eutrophic Loosdrecht lakes, including Lake Loosdrecht, and their dimensions ranged between 150 and 250 µm in length and 2 and 3.5 µm in width. The small and large Euchlanis used as experimental animals had mean lengths of 217–223 µm and 276–305 µm, respectively. Euchlanis fed on all the taxa offered as food. Clearance rates ranged from 51 to 99 µl ind–1 d–1 for the large animals and from 22 to 41 µl ind–1 d–1 for the small animals. The highest ingestion rate observed, 1.7 µg ind–1 d–1, was for the large animals feeding on Aphanizomenon. The daily ration for both size classes far exceeded 100% of body weight, reaching up to 690% for the small animals feeding on Aphanizomenon. The small animals generally appeared to assimilate the ingested food more efficiently (assimilation efficiencies: 37–100%) than the large animals (34–77%). Compared with an earlier study in which only lake seston (<33 µm) was used as food, the specific clearance rates of Euchlanis on the cyanobacteria and Prochlorothrix were generally somewhat lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号