首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Germ cell nuclear factor   总被引:2,自引:0,他引:2  
  相似文献   

3.
The estrogen receptor-related receptor gamma (ERRgamma/ERR3/NR3B3) is an orphan member of the nuclear receptor superfamily closely related to the estrogen receptors. To explore the DNA binding characteristics, the protein-DNA interaction was studied in electrophoretic mobility shift assays (EMSAs). In vitro translated ERRgamma binds as a homodimer to direct repeats (DR) without spacing of the nuclear receptor half-site 5'-AGGTCA-3' (DR-0), to extended half-sites, and to the inverted estrogen response element. Using ERRgamma deletion constructs, binding was found to be dependent on the presence of sequences in the ligand binding domain (LBD). A far-Western analysis revealed that ERRgamma forms dimers even in the absence of DNA. Two elements, located in the hinge region and in the LBD, respectively, are necessary for DNA-independent dimerization. DNA binding of bacterial expressed ERRgamma requires additional factors present in the serum and in cellular extracts. Fusion proteins of the germ cell nuclear factor (GCNF/NR6A1) with ERRgamma showed that the characteristic feature to be stimulated by additional factors can be transferred to a heterologous protein. The stimulating activity was further characterized and its target sequence narrowed down to a small element in the hinge region.  相似文献   

4.
Adenosine deaminases acting on RNA (ADAR) convert adenosine residues into inosines in double-stranded RNA. Three vertebrate ADAR gene family members, ADAR1, ADAR2, and ADAR3, have been identified. The catalytic domain of all three ADAR gene family members is very similar to that of Escherichia coli cytidine deaminase and APOBEC-1. Homodimerization is essential for the enzyme activity of those cytidine deaminases. In this study, we investigated the formation of complexes between differentially epitope-tagged ADAR monomers by sequential affinity chromatography and size exclusion column chromatography. Both ADAR1 and ADAR2 form a stable enzymatically active homodimer complex, whereas ADAR3 remains as a monomeric, enzymatically inactive form. No heterodimer complex formation among different ADAR gene family members was detected. Analysis of HeLa and mouse brain nuclear extracts suggested that endogenous ADAR1 and ADAR2 both form a homodimer complex. Interestingly, endogenous ADAR3 also appears to form a homodimer complex, indicating the presence of a brain-specific mechanism for ADAR3 dimerization. Homodimer formation may be necessary for ADAR to act as active deaminases. Analysis of dimer complexes consisting of one wild-type and one mutant monomer suggests functional interactions between the two subunits during site-selective RNA editing.  相似文献   

5.
6.
Proper expression of the protamine genes is an important event in the terminal differentiation of the male gametes in mammals. Here we present evidence that the novel orphan member of the nuclear receptor gene superfamily, Germ Cell Nuclear Factor (GCNF), may play a role in the regulation of these genes. Previously, we have shown that high-level expression of GCNF mRNA is restricted to spermatids (stages 1–8) in the adult male mouse, which makes it temporally and spatially available to regulate the mouse protamine genes. Furthermore, we have previously identified a sequence to which GCNF can bind, which consists of a direct repeat of the core halfsite AGGTCA with zero base pairs spacing the repeats (DR0). We have identified several genes that contain DR0 sequences in their 5′ promoter regions, including the protamines. The mouse protamine 1 and 2 (Prm1 and Prm2) genes therefore are potential target genes for GCNF regulation. We show that GCNF binds to one of the two DR0 sequences in the Prm1 promoter, and to the DR0 sequence in the Prm2 promoter in a specific manner. Furthermore, by using antibodies directed against GCNF, we detect endogenous GCNF in testis nuclear extracts and elutriated round spermatid nuclear extracts in Western blots. Additionally, by using these antibodies in gel-shift assays, we show that this endogenous GCNF can bind to both the Prm1 and Prm2 promoters. This evidence supports the hypothesis that GCNF mediates a novel signaling pathway, two targets of which may be the Prm1 and Prm2 genes in spermatids. Mol. Reprod. Dev. 50:396–405, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
8.
9.
Germ Cell Nuclear Factor: An Orphan Receptor in Search of a Function   总被引:1,自引:0,他引:1  
Germ Cell Nuclear Factor (GCNF) is an orphan member of the nuclearreceptor gene superfamily. Much has been understood about thefunctioning of GCNF which represents a candidate receptor fora novel hormonal signalling pathway. GCNF is not closely relatedto other members of the nuclear receptor superfamily and formsits own branch within the superfamily tree. It has a uniqueexpression pattern that spans both embryonic and adult stagesof development. In the adult, it is expressed in the germ cells:oocytes and spermatogenic cells as well as specific neuronalcells within the brain. In the embryo, GCNF expression is turnedon after gastrulation in all germ layers the ectoderm, mesodermand endoderm. An antero-posterior gradient of GCNF is establishedin the neuroectoderm of the embryo, suggesting a role in regulationof neuronal and germ cell development. Regulation of physiologicalprocesses by a nuclear receptor is achieved through regulationof gene expression. GCNF is the only nuclear receptor to specifcallybind to DR0 hormone response elements to regulate gene expression.In the absense of a ligand, GCNF represses gene expression.GCNF is capable of regulating the expression of the protaminegenes in a response element-dependent manner. At present theligand for GCNF is unknown, but it is hypothesized that GCNFis a receptor for a novel hormonal signalling pathway that effectsits biological response by regulating the expression of a subsetof genes containing DR0 response elements.  相似文献   

10.
11.
In addition to suggesting that fatty acids are endogenous ligands, our recent crystal structure of HNF-4alpha showed an unusual degree of structural flexibility in the AF-2 domain (helix alpha12). Although every molecule contained a fatty acid within its ligand binding domain, one molecule in each homodimer was in an open inactive conformation with alpha12 fully extended and colinear with alpha10. By contrast, the second molecule in each homodimer was in a closed conformation with alpha12 folded against the body of the domain in what is widely considered to be the active state. This indicates that although ligand binding is necessary, it is not sufficient to induce an activating structural transition in HNF-4alpha as is commonly suggested to occur for nuclear receptors. To further assess potential mechanisms of activation, we have solved a structure of human HNF-4alpha bound to both fatty acid ligand and a coactivator sequence derived from SRC-1. The mode of coactivator binding is similar to that observed for other nuclear receptors, and in this case, all of the molecules adopt the closed active conformation. We conclude that for HNF-4alpha, coactivator rather than ligand binding locks the active conformation.  相似文献   

12.
Sequence-specific DNA binding of short peptide dimers derived from a plant basic leucine zipper protein EmBP1 was studied. A homodimer of the EmBP1 basic region peptide recognized a palindromic DNA sequence, and a heterodimer of EmBP1 and GCN4 basic region peptides targets a non-palindromic DNA sequence when a beta-cyclodextrin/adamantane complex is utilized as a dimerization domain. A homodimer of the EmBP1 basic region peptide binds the native EmBP1 binding 5'-GCCACGTGGC-3' and the native GCN4 binding 5'-ATGACGTCAT-3' sequences with almost equal affinity in the alpha-helical conformation, indicating that the basic region of EmBP1 by itself has a dual recognition codes for the DNA sequences. The GCN4 basic region peptide binds 5'-ATGAC-3' in the alpha-helical conformation, but it neither shows affinity nor helix formation with 5'-GCCAC-3'. Because native EmBP1 forms 100 times more stable complex with 5'-GCCACGTGGC-3' over 5'-ATGACGTCAT-3', our results suggest that the sequence-selectivity of native EmBP1 is dictated by the structure of leucine zipper dimerization domain including the hinge region spanning between the basic region and the leucine zipper.  相似文献   

13.
14.
15.
16.
The yeast peroxisomal hydrolase Lpx1 belongs to the α/β-hydrolase superfamily. In the absence of Lpx1, yeast peroxisomes show an aberrant vacuolated morphology similar to what is found in peroxisomal disorder patients. Here, we present the crystal structure of Lpx1 determined at a resolution of 1.9 ?. The structure reveals the complete catalytic triad with an unusual location of the acid residue after strand β6 of the canonical α/β-hydrolase fold. A four-helix cap domain covers the active site. The interface between the α/β-hydrolase core and the cap domain forms the potential substrate binding site, which may also comprise the tunnel that leads into the protein interior and widens into a cavity. Two further tunnels connect the active site to the protein surface, potentially facilitating substrate access. Lpx1 is a homodimer. The α/β-hydrolase core folds of the two protomers form the dimer contact site. Further dimerization contacts arise from the mutual embracement of the cap domain of one protomer by the non-canonical C-terminal helix of the other, resulting in a total buried surface area of some 6000 ?2. The unusual C-terminal helix sticks out from the core fold to which it is connected by an extended flexible loop. We analyzed whether this helix is required for dimerization and for import of the dimer into peroxisomes using biochemical assays in vitro and a microscopy-based interaction assay in mammalian cells. Surprisingly, the C-terminal helix is dispensable for dimerization and dimer import. The unusually robust self-interaction suggests that Lpx1 is imported into peroxisomes as dimer.  相似文献   

17.
Human sex hormone-binding globulin (SHBG) transports sex steroids in the blood. It functions as a homodimer, but there is little information about the topography of its dimerization domain, and its steroid binding stoichiometry is controversial. The prevailing assumption is that each homodimeric SHBG molecule contains a single steroid-binding site at the dimer interface. However, crystallographic analysis of the amino-terminal laminin G-like domain of human SHBG has shown that the dimerization and steroid-binding sites are distinct and that both monomers within a homodimeric complex are capable of binding steroid. To validate our crystallographic model of the SHBG homodimer, we have used site-directed mutagenesis to create SHBG variants in which single amino acid substitutions (V89E and L122E) were introduced to produce steric clashes at critical positions within the proposed dimerization domain. The resulting dimerization-deficient SHBG variants contain a steroid-binding site with an affinity and specificity indistinguishable from wild-type SHBG. Moreover, when equalized in terms of their monomeric subunit content, dimerization-deficient and wild-type SHBGs have essentially identical steroid binding capacities. These data indicate that both subunits of the SHBG homodimer bind steroid and that measurements of the molar concentration of SHBG homodimer in serum samples have been overestimated by 2-fold.  相似文献   

18.
Understanding how the lipid environment influences transmembrane helix association requires thermodynamic measurements that can be interpreted in terms of specific chemical interactions. We have used F?rster resonance energy transfer to measure dimerization of the glycophorin A transmembrane helix in detergent micelles. The observed Kd is at least two orders of magnitude weaker in sodium dodecyl sulfate than it is in zwitterionic detergents. In contrast, neither dimerization nor the detergent affects the secondary structure of the glycophorin A helix as measured by far-UV circular dichroism. These measurements support a long standing assumption about the glycophorin A transmembrane domain, that detergents uncouple helix formation from helix dimerization. The approach is applicable to a variety of systems in diverse environments, extending our ability to measure how interactions with complex solvents affect the thermodynamics of oligomerization.  相似文献   

19.
Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase‐like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C‐terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix‐turn‐helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self‐association mediated by this domain is essential for holo‐Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in sir3Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号