首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taurocyamine kinase (TK) is a member of the highly conserved family of phosphagen kinases that includes creatine kinase (CK) and arginine kinase. TK is found only in certain marine annelids. In this study we used PCR to amplify two cDNAs coding for TKs from the polychaete Arenicola brasiliensis, cloned these cDNAs into the pMAL plasmid and expressed the TKs as fusion proteins with the maltose-binding protein. These are the first TK cDNA and deduced amino acid sequences to be reported. One of the two cDNA-derived amino acid sequences of TKs shows a high amino acid identity to lombricine kinase, another phosphagen kinase unique to annelids, and appears to be a cytoplasmic isoform. The other sequence appears to be a mitochondrial isoform; it has a long N-terminal extension that was judged to be a mitochondrial targeting peptide by several on-line programs and shows a higher similarity in amino acid sequence to mitochondrial creatine kinases from both vertebrates and invertebrates. The recombinant cytoplasmic TK showed activity for the substrates taurocyamine and lombricine (9% of that of taurocyamine). However, the mitochondrial TK showed activity for taurocyamine, lombricine (30% of that of taurocyamine) and glycocyamine (7% of that of taurocyamine). Neither TK catalyzed the phosphorylation of creatine. Comparison of the deduced amino acid sequences of mitochondrial CK and TK indicated that several key residues required for CK activity are lacking in the mitochondrial TK sequence. Homology models for both cytoplasmic and mitochondrial TK, constructed using CK templates, provided some insight into the structural correlation of differences in substrate specificity between the two TKs. A phylogenetic analysis using amino acid sequences from a broad spectrum of phosphagen kinases showed that annelid-specific phosphagen kinases (lombricine kinase, glycocyamine kinase and cytoplasmic and mitochondrial TKs) are grouped in one cluster, and form a sister-group with CK sequences from vertebrate and invertebrate groups. It appears that the annelid-specific phosphagen kinases, including cytoplasmic and mitochondrial TKs, evolved from a CK-like ancestor(s) early in the divergence of the protostome metazoans. Furthermore, our results suggest that the cytoplasmic and mitochondrial isoforms of TK evolved independently.  相似文献   

2.
To quantify individual isoforms of canine myocardial MM creatine kinase (CK) we developed an immunoblot procedure suitable for analysis of large numbers of samples. Isoforms in plasma were separated by agarose electrophoresis, immobilized on nitrocellulose, detected with anti-MM followed by a labeled second antibody, and quantified by well counting. The amount of non-CK protein was reduced with sequential ethanol precipitation. Reproducibility of the assay developed was high with a standard deviation of 5.9% of mean values for each isoform. Variation of results after serial dilutions of samples constituted with 33.3% of each of the three isoforms was modest with a standard deviation of 3.5%. The method developed provided sensitive, discrete resolution of individual MM CK isoforms under nondenaturing conditions and should prove useful for improved, objective definition of the time of onset of irreversible injury to myocardial tissue rendered ischemic and hence improved stratification of patients studied in clinical trials concerned with protection and salvage of myocardium.  相似文献   

3.
The purified creatine kinase MM of porcine skeletal muscle [Takasawa, T. & Shiokawa, H. (1981) J. Biochem. 90, 195-204] was separated into three distinct fractions by isoelectric focusing (IEF) in a sucrose gradient column, and the three active fractions were isolated by repeated IEF. There were one major fraction with isoelectric point (pI) 6.57 and two minor fractions with pI 6.74 and pI 6.34, respectively. No differences were observed in the IEF pattern of the enzyme in the presence and absence of dithiothreitol throughout the column. There was no interconversion from one form to another during IEF. The distribution of the three forms on IEF was not affected by adding protease inhibitor to the extraction medium. Of the three fractions, the major fraction had the highest specific activity. The three fractions differed from one another in their amino acid compositions. Not only porcine muscle but also rabbit muscle creatine kinase displayed this type of heterogeneity. Such microheterogeneities may occur widely in muscle creatine kinases.  相似文献   

4.
The targeting of creatine kinase isoenzymes to specific sites within muscle cells provides a system for the regeneration of ATP in situ from ADP and creatine phosphate. We have recently reported the colocalization of brain-type (B) creatine kinase and the nonsarcomeric mitochondrial creatine kinase isoenzymes in the thick ascending limb of the loop of Henle in the rat kidney, suggesting that creatine kinase may regenerate ATP for sodium transport (Friedman, D.L., and Perryman, M.B. (1991) J. Biol. Chem. 266, 22404-22410). In order to test the hypothesis regarding the association of B creatine kinase with sodium transport, we examined the creatine kinase enzymes in the rectal (salt-secreting) gland of the dogfish shark which contains high levels of the Na+/K(+)-ATPase. The creatine kinase isoform composition was determined by non-denaturing electrophoresis, immunoblotting, protein purification, and amino acid sequence analysis. The results demonstrate both B creatine kinase and mitochondrial creatine kinase proteins are present in the rectal gland, an isoform composition which is the same as in the mammalian kidney. By using a combination of chromatographic techniques, shark B creatine kinase was purified to homogeneity and partial sequence data was obtained from two cyanogen bromide peptide fragments. One of these fragments contains the active site and is identical at all sequenced residues with the corresponding region from the echinoderm sperm flagellar creatine kinase, and is 96% homologous with both chicken and rat B creatine kinase subunits. The other fragment corresponds to a region near the N-terminal of mammalian creatine kinases and is 89% homologous with B creatine kinase from chicken. The localization of these isoforms was examined by immunocytochemistry using subunit specific antisera. Mitochondrial creatine kinase and B creatine kinase immunoreactivity are detected in all tubules, and is restricted to the basal region of the cells, which is the site of the Na+/K(+)-ATPase. The conservation of creatine kinase isoform expression in excretory tissue, and the localization of creatine kinase immunoreactivity in the basal region of the tubule cells, demonstrate that subcellular compartmentation of B creatine kinase may underly the functional coupling of creatine kinase activity with sodium transport.  相似文献   

5.
Creatine kinase isoenzymes from Torpedo californica electric organ, skeletal muscle, and brain were purified and characterized. Torpedo electric organ and skeletal muscle creatine kinase have identical apparent Mr, electrophoretic mobility, and cyanogen bromide fragments. The electrophoretic mobility of the Torpedo creatine kinase was anodal as compared to mammalian MM creatine kinase. No creatine kinase isoenzyme with an electrophoretic mobility similar to mammalian BB creatine kinase was seen in any of the Torpedo tissues examined. Hybridization studies demonstrate the Torpedo electric organ creatine kinase to be composed of identical subunits and capable of producing an enzymatically active heterodimer when combined with canine BB creatine kinase. Creatine kinase from sucrose gradient-purified Torpedo electric organ acetylcholine receptor-rich membranes has an electrophoretic mobility identical with the cytoplasmic isoenzyme and an apparent Mr identical with mammalian MM creatine kinase. Western blot analysis showed Torpedo electric organ skeletal muscle creatine kinase and acetylcholine receptor-enriched membrane creatine kinase reacted with antiserum specific for canine MM creatine kinase. NH2-terminal amino acid sequence determinations show considerable sequence homology between human MM, Torpedo electric organ, chicken MM, and porcine MM creatine kinase. The acetylcholine receptor-associated creatine kinase is, therefore, identical with the cytoplasmic form from the electric organ and is composed of M-subunits.  相似文献   

6.
Creatine kinase enzymes are present in tissues such as muscle and brain to interconvert creatine phosphate and ADP, thus providing a system to interconnect energy production and utilization (Bessman, S. P., and Carpenter, C. L. (1985) Annu. Rev. Biochem. 54, 831-862). Creatine kinase isoenzymes in kidney have received little attention since kidney contains relatively low creatine kinase activity compared with muscle and brain and because there is disagreement regarding the identity of the specific isoforms expressed in kidney. Using a combination of chromatographic and immunological techniques, we have identified two isoforms of creatine kinase in rat kidney supernatants, B creatine kinase, and the non-sarcomeric form of the mitochondrial creatine kinase, which represent 82 and 15%, respectively, of the total creatine kinase activity in this tissue. The identity of the non-muscle form of the mitochondrial creatine kinase was confirmed by N-terminal sequence analysis and compared with recently published cDNA sequences (Haas, R. C., and Strauss, A. W. (1990) J. Biol. Chem. 265, 6921-6927). We prepared multiple antisera specific for each isoform using synthetic peptide immunogens based upon nonhomologous regions from the primary sequence of each creatine kinase isoform. Immunocytochemical results demonstrate that both creatine kinase isoforms are colocalized in the inner stripe of the outer medulla in tubules of the distal nephron. A similar distribution of creatine kinase isoforms was obtained when different layers of the renal cortex and medulla were examined for creatine kinase activity and isozyme content using nondenaturing electrophoresis. In general, the distribution of creatine kinase enzymes in kidney corresponds to the regions of greatest ATP utilization, oxygen consumption, and sodium transport. These results suggest a role for creatine kinase enzymes in the coupling of ion transport and oxidative phosphorylation in the distal nephron of the mammalian kidney.  相似文献   

7.
The peptide hormones guanylin and uroguanylin are ligands of the intestinal guanylyl cyclase-C (GC-C) that is involved in the regulation of epithelial water and electrolyte transport. The small peptides contain 15 and 16 amino acids, respectively, and two disulfide bonds with a 1-3/2-4 connectivity. This structural feature causes the unique existence of two topological isoforms for each peptide in an approximate 3:2 ratio, with only one of the isoforms exhibiting GC-C-activating potential. The two uroguanylin isomers can be separated by HPLC and are of sufficient stability to be studied separately at ambient temperatures while the two guanylin isomers are rapidly interconverting even at low temperatures. Both isomers show clearly distinguishable (1)H chemical shifts. To investigate the influence of certain amino acid side chains on this isomerism and interconversion kinetics, derivatives of guanylin and uroguanylin (L-alanine scan and chimeric peptides) were designed and synthesized by Fmoc solid-phase chemistry and compared by HPLC and 2D (1)H NMR spectroscopy. Amino acid residues with the most significant effects on the interconversion kinetics were predominantly identified in the COOH-terminal part of both peptides, whereas amino acids in the central part of the peptides only moderately affected the interconversion. Thus, the conformational conversion among the isomers of both peptides is under the control of a COOH-terminal sterical hindrance, providing a detailed model for this dynamic isomerism. Our results demonstrate that kinetic control of the interconversion process can be achieved by the introduction of side chains with a defined sterical profile at suitable sequence positions. This is of potential impact for the future development of GC-C peptide agonists and antagonists.  相似文献   

8.
Characterization of rat heart tropoelastin   总被引:1,自引:0,他引:1  
Several overlapping rat tropoelastin cDNA clones were isolated from a lambda gt11 rat heart cDNA library and their nucleotide sequence was determined. The corresponding deduced amino acid sequence of rat tropoelastin revealed strong homology to bovine and human tropoelastins although possessing some unique features including greater size (18%) and composition of repetitive units. Comparison of the amino acid sequence of rat tropoelastin to four other tropoelastin species reveals that the hydrophobic peptide repeat regions in the middle of each molecule and the crosslinking areas containing three lysine residues are remarkably conserved. A possible function for the clustering of three lysine residues in providing a mechanism for the in vivo reduction of dehydrolysinonorleucine via a redox shuttle with dihydrodesmosine is proposed. In addition, the COOH-terminal sequence of the rat tropoelastin is virtually identical to tropoelastins of other species in possessing a cysteine/arginine/lysine containing segment. There are no obvious amino acid insertions or substitutions in the COOH-terminal half of the rat tropoelastin molecule which would signal unique cleavage or glycosylation sites. Examination of the steady-state levels of rat tropoelastin mRNA in 8- and 12-day neonatal lung, heart, and aortic tissues showed that the amount of tropoelastin mRNA was abundant and of similar size (3.9 kb) in all three tissues.  相似文献   

9.
A bound form of creatine kinase associated with brain particulate was characterized by isoelectric focusing, antigenicity and chromatography and compared to muscle (MM), brain (BB), and heart mitochondrial isoenzymes. On partial purification and isoelectric focusing, the solubilized enzyme has a pl of 7.3, similar to the pl of muscle creatine kinase MM, pl 6.8, but different from brain creatine kinase BB, which precipitates on isoelectric focusing in sucrose or glycerol stabilized media at its calculated pl of 5.6. Gel filtration chromatography of deoxycholate solubilized particulate creatine kinase on Sephadex Gl50 reveals an estimated molecular weight of approximately 80,000 daltons. The brain particulate enzyme is antigenically distinct from both muscle and rat heart mitochondrial creatine kinase isoenzymes but has antigenic similarity with soluble cytoplasmic brain BB. The situation may be analogous to that found with rat heart mitochondria and rat heart cytoplasmic isoenzymes which we have shown to exhibit antigenic similarity even though differences in electrophoretic and amino acid composition have been demonstrated; however, the confident determination that the particulate enzyme is a separate isoenzyme will have to await amino acid analysis.  相似文献   

10.
Serum amyloid A protein (apo-SAA) is an acute-phase reactant and an apolipoprotein of high density lipoproteins (HDL). Six major isoforms of apo-SAA occur in humans (pI 6.0, 6.4, 7.0, 7.4, 7.5, 8.0). In this report we have rationalized the phenotypic expression of apo-SAA isoforms with published apo-SAA structures predicted from apo-SAA cDNA's pA1 and pSAA82 and the genomic DNA SAAg9. The six apo-SAA isoforms fall into three pairs, pI 6.0/6.4, 7.0/7.5, and 7.4/8.0, which are products of cDNA pA1, cDNA pSAA82, and genomic DNA SAAg9, respectively. The second of each isoform pair (i.e. pI 6.4, 7.5, and 8.0) is the "primary" product: a 104-residue peptide with the NH2-terminal sequence Arg-Ser-Phe-Phe. Each primary product is processed either to a major 103-residue peptide with the NH2-terminal sequence Ser-Phe-Phe or processed to a minor 102-residue product which results from the loss of both an Arg and a Ser residue from the NH2 termini. These "secondary" products have the lower pI values of 6.0, 7.0, and 7.4, respectively. The isoelectric points of the SAAg9 products were confirmed by expression of SAAg9 in transfected mouse L-cells. Both the pI 8.0 and 7.4 isoforms were present in cellular extracts, suggesting that post-translational modification of apo-SAA may occur intracellularly. However, the greater relative abundance of the pI 7.4 isoform extracellularly suggests that the major conversion may occur after secretion. Whereas the gene corresponding to the pA1 cDNA sequence does not show allelic variation, the segregation characteristics of the pI 7.0/7.5 and 7.4/8.0 isoform pairs amongst individuals suggests that these isoforms are the products of genes (with sequences corresponding to pSAA82 and SAAg9, respectively) which are allelic variants at a single locus distinct from that for the pI 6.0/6.4 isoform pair.  相似文献   

11.
We have isolated and characterized a cDNA sequence corresponding to the zebrafish muscle-specific isoform of creatine kinase. The sequence is 1552 bases in length and contains an open reading frame capable of producing a 381 amino acid protein. The sequence is very similar to muscle-specific creatine kinases isolated from other species at both the nucleotide and amino acid levels but contains some differences from a previously reported zebrafish clone.  相似文献   

12.
Eukaryotic translation initiation factor 5A (eIF-5A) (older terminology, eIF-4D) is unique in that it contains the unusual amino acid hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine). Hypusine is formed by a post-translational event in which a specific lysine residue is modified by a structural contribution from spermidine. Metabolic labeling of chick embryo fibroblasts with [3H]spermidine or [3H]lysine gives rise to two distinct proteins, designated I (approximately 20 kDa and pI 5.6) and II (approximately 18 kDa and pI 5.35), that contain [3H]hypusine. Upon incubation with [3H]lysine the labeling of the two proteins followed a similar time course and showed approximately the same ratio over the 6-h incubation period. [3H]Hypusine-containing proteins from cells which had been cultured with [3H]spermidine were employed as tracers for isolation of hypusine-containing proteins from whole chick embryos. Four such proteins were obtained. Two of these proteins, I and II, correspond to the two native proteins synthesized in chick embryo fibroblasts; the other two forms, Ia and IIa, displayed properties suggesting that they were derived from the native proteins, I and II, respectively, during purification. The amino acid compositions and the tryptic peptide maps of the 20-kDa protein (I) and the 18 kDa protein (II) suggest that they are closely related but distinct proteins. In fact, amino acid sequence analysis of the two major proteins revealed differences in the polypeptide backbone of the two proteins. In spite of structural differences, the two native forms (I and II), as well as the two altered forms (Ia and IIa), were effective in stimulating methionyl-puromycin synthesis, providing evidence that they are indeed functional isoforms of eIF-5A.  相似文献   

13.
14.
Histone H1 isoforms isolated from asynchronously grown HeLa cells were subjected to enzymatic digestion and analyzed by nano-flow reversed-phase high performance liquid chromatography (RP-HPLC) tandem mass spectrometry (MS/MS) on both quadrupole ion trap and linear quadrupole ion trap-Fourier transform ion cyclotron resonance mass spectrometers. We have observed all five major isoforms of histone H1 (H1.1, H1.2, H1.3, H1.4, and H1.5) as well as a lesser studied H1, isoform H1.X. MS/MS experiments confirmed N-terminal acetylation on all isoforms plus a single internal acetylation site. Immobilized metal affinity chromatography in combination with tandem mass spectrometry was utilized to identify 19 phosphorylation sites on the five major H1 isoforms plus H1.X. Fourteen of these phosphorylation sites were located on peptides containing the cyclin dependent kinase (CDK) consensus motif (S/T)-P-X-Z (where X is any amino acid and Z is a basic amino acid). Five phosphorylation sites were identified in regions that did not fit the consensus CDK motif. One of these phosphorylation sites was found on the serine residue on the H1.4 peptide KARKSAGAAKR. The adjacent lysine residue to the phosphoserine was also shown to be methylated. This finding raises the question of whether the hypothesized "methyl/phos" switch could be extended to linker histones, and not exclusive to core histones.  相似文献   

15.
Creatine kinase has been identified as a most prominent component of Torpedo electric organ and a minority constituent of the acetylcholine receptor (AChR) membranes obtained therefrom. Purification by low temperature ethanol extraction, precipitation of the Mg2+-enzyme complex, and mercurial-agarose chromatography yield preparations of soluble kinase with specific activities greater than 550 units/mg protein. Retention times in ion-exchange high performance liquid chromatography, electrophoretic behavior, immunochemical properties, tryptic mapping, and amino acid composition enable the comparison of creatine kinase isoenzymes. The denatured subunits of the predominant species have pI values of 6.3-6.8 and Mr = 40,000-42,000 characteristic of the so-called v2 proteins and show cross-reactivity with antibodies against the BB ("brain" type) creatine kinase. The MM ("muscle" type) antigens could be detected in the total electrocyte, but not in the AChR membranes; they have a slightly lower molecular weight and higher pI. The in situ membrane association of the BB isoenzyme is confirmed by immunocytochemistry. The apparent Km values for the substrate creatine phosphate are 2.2 mM for the AChR membrane-associated enzyme and 2.5 mM for the muscle form. The apparent Km values for Mg2+-ADP are 0.54 and 0.22 mM, respectively. Thus, a 2-fold higher affinity in the binding of ADP to the binary enzyme-creatine-P complex results from membrane association.  相似文献   

16.
The Saccharomyces cerevisiae ubiquitin-conjugating enzymes (E2s) UBC4 and UBC5 are essential for degradation of short-lived and abnormal proteins. We previously identified rat cDNAs encoding two E2s with strong sequence similarity to UBC4 and UBC5. These E2 isoforms are widely expressed in rat tissues, consistent with a fundamental cellular function for these E2s. We now report a new isoform, 8A, which despite having >91% amino acid identity with the other isoforms, shows several novel features. Expression of the 8A isoform appears restricted to the testis, is absent in early life, but is induced during puberty. Hypophysectomy reduced expression of the 8A isoform. In situ hybridization studies indicated that 8A mRNA is expressed mainly in round spermatids. Immunoblot analyses showed that 8A protein is found not only in subfractions of germ cells enriched in round spermatids but also in subfractions containing residual bodies extruded from more mature elongated spermatids, indicating that the protein possesses a longer half-life than the mRNA. Unlike all previously identified mammalian and plant homologs of S. cerevisiae UBC4, which possess a basic pI, the 8A isoform is unique in possessing an acidic pI. The small differences in sequence between the 8A isoform and other rat isoforms conferred differences in biochemical function. The 8A isoform was less effective than an isoform with a basic pI or ineffective in conjugating ubiquitin to certain fractions of testis proteins. Thus, although multiple isoforms of a specific E2 may exist to ensure performance of a critical cellular function, our data demonstrate, for the first time, that multiple genes also permit highly specialized regulation of expression of specific isoforms and that subtle differences in E2 primary structure can dictate conjugation of ubiquitin to different subsets of cellular proteins.  相似文献   

17.
Recombinant porcine (rpST) and bovine somatotropins (rbST) synthesized in Escherichia coli contain the amino acid, epsilon-N-acetyllysine. This amino acid was initially discovered in place of the normal lysine144 in a modified reversed-phase HPLC (RP-HPLC) species of rpST. Mass spectrometry and amino acid sequencing of a tryptic peptide isolated from this RP-HPLC purified protein were used to identify this altered residue as epsilon-N-acetyllysine. Ion-exchange chromatography was utilized to prepare low isoelectric point (pI) forms of rpST and rbST, which are enriched in epsilon-N-acetyllysine. Electrospray mass spectrometry demonstrated that the majority of the protein in these low pI fractions contained species 42 Da larger than normal. Immobilized pH gradient electrophoresis (IPG) of the ion-exchange purified low pI proteins was used to isolate several monoacetylated species of rpST and rbST. The location of the acetylated lysine in each IPG-purified protein was determined by tryptic peptide mapping and amino acid sequencing of the altered tryptic peptides. Amino acid analyses of enzymatic digests of rpST and rbST were also used to confirm the presence of epsilon-N-acetyllysine in these recombinant proteins. These data demonstrate that a significant portion of rpST and rbST produced in E. coli contain this unusual amino acid.  相似文献   

18.
A peptide derived from the COOH-terminus of rabbit liver fructose 1,6-bisphosphatase (Fru-P2ase, EC 3.1.3.11) has been isolated and its amino acid sequence determined. The COOH-terminus is lysine, but some preparations contain COOH-terminal alanine or lysyl lysine. This region of the protein appears to be susceptible to modification by the action of an endogenous peptidyldipeptidase.  相似文献   

19.
Phytomonas are trypanosomatid plant parasites closely related to parasites that cause several human diseases. Little is known about the biology of these organisms including aspects of their metabolism. Arginine kinase (E.C. 2.7.3.3) is a phosphotransferase which catalyzes the interconversion between the phosphagen phosphoarginine and ATP. This enzyme is present in some invertebrates and is a homolog of another widely distributed phosphosphagen kinase, creatine kinase. In this work, a single canonical arginine kinase isoform was detected in Phytomonas Jma by enzymatic activity assays, PCR, and Western Blot. This arginine kinase is very similar to the canonical isoforms found in T. cruzi and T. brucei, presenting about 70% of amino acid sequence identity and a very similar molecular weight (40kDa). The Phytomonas phosphagen system seems to be very similar to T. cruzi, which has only one isoform, or T. brucei (three isoforms); establishing a difference with other trypanosomatids, such as Leishmania, which completely lacks phosphagen kinases, probably by the presence of the arginine-consuming enzyme, arginase. Finally, phylogenetic analysis suggests that Kinetoplastids' arginine kinase was acquired, during evolution, from the arthropod vectors by horizontal gene transfer.  相似文献   

20.
Creatine kinase (CK) is coded for by at least four loci in higher vertebrates--two cytoplasmic isoforms, muscle (M) and brain (B), and two mitochondrial isoforms, sarcomeric and ubiquitous. M is expressed primarily in skeletal muscle, while B is expressed in a variety of cells, including cardiac and smooth muscle fibers, neurons, transport epithelia, and photoreceptors. M and B subunits form very stable homodimers (MM [M-CK], BB [B-CK]) and heterodimers (MB). M-CK is capable of binding to the M line of the myofibril, thereby creating an energy transfer microcompartment; BB and MB CKs are not. M- and B-like CKs are present in all vertebrates yet examined, including fish. Cytoplasmic, dimeric CKs are widely distributed in the invertebrates. The only available amino acid sequence for an invertebrate dimeric CK, that of the protostome polychaete Chaetopterus variopedatus, is just as similar to the vertebrate M isoform as to the B isoform. Echinoderms lack dimeric, cytoplasmic CKs, which appear to be replaced by a dimeric arginine kinase which evolved secondarily from CK. Thus, it is likely that the gene duplication event producing the M and B isoforms occurred after the divergence of the chordates from echinoderms. To narrow down the timing of this duplication event, we obtained the cDNA and deduced amino acid sequences of dimeric CKs from the tunicate Ciona intestinalis (subphylum Urochordata) and the lancelet Branchiostoma floridae (subphylum Cephalochordata). Our results show that these CKs are strikingly similar to both invertebrate and vertebrate CKs. However, phylogenetic analyses by neighbor-joining and parsimony show that these two enzymes appeared to have diverged before the point of divergence of the M and B isoforms. Thus, the gene duplication event for formation of the muscle and brain isoforms of CK most likely occurred during the radiation of the fish, a time noted for gene duplication events at a variety of other loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号