首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 62 毫秒
1.
大豆疫霉根腐病抗源筛选   总被引:18,自引:2,他引:18  
由大豆疫霉菌引起的大豆疫霉根腐病是大豆生产的重要病害,该病已在我国大豆主要产区发生,并在局部地区造成较大产量损失。利用抗病品种是防治大豆疫霉根腐病最有效的方法。本研究目的是筛选大豆疫霉根腐病抗源,为病害防治和抗病品种的选育提供参考。用下胚轴创伤接种方法对120个栽培大豆品种(系)进行接种,鉴定其对10个具有不同毒力大豆疫霉菌菌株的抗性。有110个品种(系)分别抗1~10个大豆疫霉菌菌株,其中以河南大豆品种(系)对疫霉菌的抗性最丰富,安徽、湖北和山西大豆品种(系)也具有抗性多样性。120个大豆品种(系)对10个大豆疫霉菌菌株共产生57个反应型,有4个抗性反应型分别与单个抗病基因的反应型一致,有7个抗性反应型与2个已知基因组合的反应型相同,其他抗性反应型为新的类型。一些大豆品种(系)中可能存在有效的抗大豆疫霉根腐病新基因。  相似文献   

2.
用下胚轴伤口接种方法接种鉴定黑龙江省60个栽培大豆品种和育成品系对5个具有不同毒力大豆疫霉菌菌株41-4、PMCl、USAR4、PSZJ6和USAR17的抗性.有50个品种(系)抗1个或1个以上茵株或表现中间类型,其中有5个、8个、16个和21个品种(系)分别对4个、3个、2个和1个菌株表现抗性或中间类型.60个品种(系)对5个菌株共产生12种反应模式,其中呈RRSSR反应类型的品种(系)可能含有Rpslα或Rpslc基因,品系农大3861可能含有Rps3c基因,呈SSSSS反应模式的品种(系)可能含有Rps7基因,或不含抗病基因;其它9种反应模式与含有已知单基因品种或单基因组合的反应模式不同,可能具有未知抗病基因.该研究结果表明,黑龙江省具有较丰富的抗大豆疫霉根腐病大豆品种(系),大部分品种(系)的抗性是有效的,可合理地用于大豆生产和抗疫霉根腐病育种.  相似文献   

3.
大豆种质对疫霉根腐病抗性特点研究   总被引:6,自引:0,他引:6  
对1027份中国和国外引进的大豆种质进行了大豆疫霉(Phytophthora sojae)根腐病的抗病性鉴定评价.结果表明,中国大豆种质的抗病性高于国外引进种质;中国南方的大豆种质抗病性较北方种质强,长江流域大豆中抗病种质比率最高,其次为黄淮海流域种质,而东北地区抗病种质较少;不同省份大豆种质的总体抗病性差异明显;育成品系的抗性好于改良品种和农家种,但不同省份来源的农家种、品系和品种抗性存在差异,黑龙江材料抗病性最低,这也是该省大豆疫霉根腐病严重发生的重要原因之一;在大豆籽粒脐色为黄色和褐色的材料中,抗病种质较多.  相似文献   

4.
大豆种质对疫霉根腐病抗性特点研究   总被引:7,自引:0,他引:7  
对1027份中国和国外引进的大豆种质进行了大豆疫霉(Phytophthora sojae)根腐病的抗病性鉴定评价。结果表明,中国大豆种质的抗病性高于国外引进种质;中国南方的大豆种质抗病性较北方种质强,长江流域大豆中抗病种质比率最高,其次为黄淮海流域种质,而东北地区抗病种质较少;不同省份大豆种质的总体抗病性差异明显;育成品系的抗性好于改良品种和农家种,但不同省份来源的农家种、品系和品种抗性存在差异,黑龙江材料抗病性最低,这也是该省大豆疫霉根腐病严重发生的重要原因之一;在大豆籽粒脐色为黄色和褐色的材料中,抗病种质较多。  相似文献   

5.
用SSR标记分析抗疫霉根腐病大豆品种(系)的遗传多样性   总被引:2,自引:0,他引:2  
利用50对SSR引物对抗疫霉根腐病大豆品种(系)进行遗传多样性分析。在166份品种(系)中,50个SSR座位共产生265个等位变异,平均每个座位5.3个。采用NTSYS-pc2.10计算品种(系)间遗传相似系数,平均相似系数为0.3124,表明抗疫霉根腐病大豆品种(系)间的遗传差异较大。用UPMGA进行聚类分析,166个品种(系)在相似系数为0.33时被聚为6类,地理来源相同的品种(系)大多聚类在一起。一些具有相同或相近抗病反应型的品种(系)被聚类在同一个类群中,表明这些抗病品种(系)的遗传关系较近,应有选择地利用。W illiam s和C lark抗疫霉根腐病近等基因系构成明显不同于中国大豆的基因源,可以用于拓宽我国大豆品种的遗传基础。  相似文献   

6.
丰富的遗传多样性可为大豆育种提供宽阔的遗传基础,本研究基于35对SSR标记,对60份东北地区大豆疫霉根腐病抗性品种进行了遗传多样性分析,共检测到189个等位基因,平均每个位点等位变异数5.4个,多态性信息含量指数(PIC)为0.1550~0.8195,平均为0.6636;遗传相似系数的变异范围为0.31~0.74。利用5对高多态性SSR引物构建了60份抗性材料的指纹图谱,这5对SSR引物构建的指纹图谱可以将60份疫霉根腐病抗性材料逐一区分开。采用NTSYS2.10基于遗传距离的聚类分析,将60份抗性材料分为7个类群,其中78.33%的抗性品种(系)的遗传相似系数在0.45~0.74间,表明遗传差异相对较窄,品种间遗传多样性水平较低。聚类分析与群体遗传结构分析结果有部分重合,均反映出不同地区的抗性材料间存在一定的渗透和交流。  相似文献   

7.
大豆品种早熟18抗疫霉根腐病基因的SSR分子标记   总被引:3,自引:0,他引:3  
大豆品种早熟18是抗疫霉根腐病的有效抗源。本研究鉴定和分子标记早熟18的抗疫霉根腐病基因,以期为该品种的有效利用及分子辅助育种奠定基础。以感病大豆品种Williams与早熟18杂交建立分离群体。抗性遗传分析表明,早熟18对大豆疫霉菌抗性由1个显性单基因控制,该基因被定名为RpsZS18。SSR标记连锁分析表明,RpsZS18位于大豆分子遗传连锁群D1b上的SSR标记Sat_069和Sat_183之间,与这两个标记的遗传距离分别为10.0cM和8.3cM。RpsZS18是D1b连锁群上鉴定的第一个抗疫霉根腐病基因。  相似文献   

8.
利用野生大豆资源创新优质抗病大豆新种质   总被引:13,自引:1,他引:13  
利用野生大豆与栽培大豆种间杂交中间材料与高产栽培大豆回交转育,创新选育出蛋白质含量45%以上,蛋脂总含量63%以上,分别抗大豆疫霉根腐病,抗大豆灰斑病,农艺性状优良的大豆创新种质资源3份。其中,龙品8802-1抗大豆疫霉根腐病兼抗大豆灰斑病,蛋白质含量45.64%,脂肪含量18.42%,蛋脂总含量64.06%;龙品01-757抗大豆灰斑病,蛋白质含量45.99%,脂肪含量19.4%,蛋脂总含量65.39%;龙品9501,中抗大豆灰斑病,蛋白质含量45.11%,脂肪含量18.32%,蛋脂总含量63.43%。研究结果表明,利用含有野生大豆血缘的种间杂交材料与高产栽培大豆回交,是拓宽大豆遗传基础,创新选育优质、抗病、农艺性状优良大豆新种质资源的有效途径。  相似文献   

9.
野生大豆资源对大豆疫病抗病性和耐病性鉴定   总被引:1,自引:0,他引:1  
大豆疫病是大豆重要病害之一,在世界范围内导致严重经济损失。防治大豆疫病最有效方法是利用抗病或耐病品种。筛选抗性资源是发掘抗性基因和抗病育种的基础。本研究鉴定了野生大豆资源对大豆疫病的抗病性和耐病性,以期发掘优异抗源。苗期用子叶贴菌块方法鉴定104份野生大豆资源对两个不同毒力的大豆疫霉分离物PSJS2(毒力型:1a,1b,1c,1d,1k,2,3a,3b,3c,4,5,6,7,8)和PS41-1(毒力型:1a,1d,2,3b,3c,4,5,6,7,8)抗性,结果表明33份资源抗PS41-1,35份资源抗PSJS2,其中18份抗两个分离物。在抗病性鉴定基础性上,用菌层接种方法对选择的82份资源进行耐病性鉴定,发现7份高耐病性资源。这些结果表明,野生大豆中可能含有新的大豆疫病抗病和(或)耐病资源,这些抗病或耐病资源可以用于未来大豆抗病育种,以丰富大豆对大豆疫病的抗性遗传基础。  相似文献   

10.
中国大豆疫霉菌遗传多样性的RAPD分析   总被引:6,自引:0,他引:6  
采用随机扩增多态性DNA(RAPD)技术,利用13个引物对75个中国大豆疫霉菌分离物和11个美国分离物进行PCR.扩增。在78个RAPD标记中,多态性标记为68个,占87.2%。RAPD指纹聚类分析表明,当以相异距离0.3为阈值,86个分离物被划为12个RAPD遗传组,其中J组有54个分离物,占总数的62.8%,包括44个中国分离物和10个美国分离物。在中国大豆疫霉菌群体内,多数分离物之间遗传相似性较低,在DNA水平上存在显著的遗传变异,具有较丰富的遗传多样性。RAPD分组结果未表明大豆疫霉菌DNA多态性特征与病原菌毒力基因构成之间和分离物地理来源之间存在相关性,证明中国不同地区的大豆疫霉菌群体在与大豆品种的互作中发生了广泛的遗传变异,具有DNA遗传进化方向和毒力基因演变的多样性。美国大豆疫霉菌分离物间遗传距离较近,而中国分离物在总体上与美国分离物的遗传距离较远,表明中国大豆疫霉菌具有比较独特的遗传背景。  相似文献   

11.
Phytophthora sojae Kauf. and Gerd, a host specific pathogen to soybean, causes pre and postemergence damping-off and root and stem rot on soybean. The pathogen evokes severe yield losses in most soybean growing areas worldwide. The objective of this study was to determine phenotypic and genotypic diversity among single zoospore isolates (SZIs) originating from two single zoosporangia (Ps411-1 and Ps411-2) derived from the same parental isolate of P . sojae Ps411. Results showed that colony morphology and growth rate of 32 SZIs derived from sporangium Ps411-1 and 35 SZIs released from sporangium Ps411-2 did not significantly differ from the parental isolate Ps411. Pathogenicity of the SZIs was tested on three resistant and three susceptible Chinese soybean cultivars. While the majority of SZIs derived from sporangium Ps411-1(59.4%) and sporangium Ps411-2(71.4%) retained the same virulence spectrum as the parental isolate, the other SZIs of both progenies demonstrated either a higher or a lower level of virulence compared to that of parental isolate. A low level genetic variability in the populations of both single zoospore progenies was also demonstrated using the sequence-related amplified polymorphism (SRAP) technique. Cluster analysis separated the SZIs from both zoosporangia, Ps411-1 and Ps411-2, into four and three SRAP groups, respectively. No close correlation among SRAP and virulence could be established among SZIs. The results of this study suggest that virulence variability may be regarded as part of the total genetic changes among the zoospore progenies derived from single-zoosporangia. The pathogenic variability during asexual reproduction may play a role in changing the virulence structure of P . sojae .  相似文献   

12.
Forty‐nine Phytophthora isolates were obtained from roots and crown of apricot trees with symptoms of decline grown in commercial orchards in Malatya, Elaz?? and Diyarbak?r provinces, Turkey, in 2011 and 2013. All of the recovered isolates were identified as Phytophthora palmivora on the basis of morphological characteristics. Blast analysis of ITS region sequences of rDNA of 5 isolates revealed 100% identity with a reference isolates of P. palmivora from GenBank. Isolates of P. palmivora were pathogenic on 12‐month‐old wild apricot rootstock ‘Zerdali’ plants that were wound inoculated on the roots and on the crown. This study demonstrated that P. palmivora is the cause of the crown and root rot found on apricot in Turkey. To our knowledge, this is the first report of P. palmivora on this host plant.  相似文献   

13.
Plants can be infected by multiple pathogens concurrently in natural systems. However,pathogen–pathogen interactions have rarely been studied. In addition to the oomycete Phytophthora sojae, fungi such as Fusarium spp. also cause soybean root rot. In a 3-year field investigation, we discovered that P. sojae and Fusarium spp. frequently coexisted in diseased soybean roots. Out of 336 P. sojae–soybean–Fusarium combinations,more than 80% aggravated disease. Different Fusarium species all enhanced P...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号