首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacterial communities associated with seagrass bed sediments are not well studied. The work presented here investigated several factors and their impact on bacterial community diversity, including the presence or absence of vegetation, depth into sediment, and season. Double-gradient denaturing gradient gel electrophoresis (DG-DGGE) was used to generate banding patterns from the amplification products of 16S rRNA genes in 1-cm sediment depth fractions. Bioinformatics software and other statistical analyses were used to generate similarity scores between sections. Jackknife analyses of these similarity coefficients were used to group banding patterns by depth into sediment, presence or absence of vegetation, and by season. The effects of season and vegetation were strong and consistent, leading to correct grouping of banding patterns. The effects of depth were not consistent enough to correctly group banding patterns using this technique. While it is not argued that bacterial communities in sediment are not influenced by depth in sediment, this study suggests that the differences are too fine and inconsistent to be resolved using 1-cm depth fractions and DG-DGGE. The effects of vegetation and season on bacterial communities in sediment were more consistent than the effects of depth in sediment, suggesting they exert stronger controls on microbial community structure.  相似文献   

2.
3.
The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions.  相似文献   

4.
5.
Separation of amplified V3 region from 16S rDNA by denaturing gradient gel electrophoresis (DGGE) was tested as a tool for differentiation of lactic acid bacteria commonly isolated from food. Variable V3 regions of 21 reference strains and 34 wild strains referred to species belonging to the genera Pediococcus, Enterococcus, Lactococcus, Lactobacillus, Leuconostoc, Weissella, and Streptococcus were analyzed. DGGE profiles obtained were species-specific for most of the cultures tested. Moreover, it was possible to group the remaining LAB reference strains according to the migration of their 16S V3 region in the denaturing gel. The results are discussed with reference to their potential in the analysis of LAB communities in food, besides shedding light on taxonomic aspects. Received: 2 August 2000 / Accepted: 5 September 2000  相似文献   

6.
DGGE/TGGE技术及其在微生物分子生态学中的应用   总被引:48,自引:1,他引:48  
变性梯度凝胶电泳(DGGE)和温度梯度凝胶电泳(TGGE)是近些年微生物分子生态学研究中的热点技术之一。由于DGGE/TGGE技术具有可靠性强、重现性高、方便快捷等优点,被广泛地应用于微生物群落多样性和动态性分析。文章对DGGE/TGGE技术原理与关键环节、局限性和应用前景进行了综述。  相似文献   

7.
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.  相似文献   

8.
A combined lipid biomarker-16S rRNA gene denaturing gradient gel electrophoresis analysis was used to monitor changes in the physiological status, biomass, and microbial composition of a microbial mat. In the morning hours, an increase in the biomass of layers containing a high density of phototrophs and a decrease in the growth rate in the deep layers were observed. The combined approach also revealed differences in major groups of microorganisms, including green nonsulfur, gram-positive, and heterotrophic bacteria.  相似文献   

9.
Like bacteria, fungi play an important role in the soil ecosystem. As only a small fraction of the fungi present in soil can be cultured, conventional microbiological techniques yield only limited information on the composition and dynamics of fungal communities in soil. DNA-based methods do not depend on the culturability of microorganisms, and therefore they offer an attractive alternative for the study of complex fungal community structures. For this purpose, we designed various PCR primers that allow the specific amplification of fungal 18S-ribosomal-DNA (rDNA) sequences, even in the presence of nonfungal 18S rDNA. DNA was extracted from the wheat rhizosphere, and 18S rDNA gene banks were constructed in Escherichia coli by cloning PCR products generated with primer pairs EF4-EF3 (1.4 kb) and EF4-fung5 (0.5 kb). Fragments of 0.5 kb from the cloned inserts were sequenced and compared to known rDNA sequences. Sequences from all major fungal taxa were amplified by using both primer pairs. As predicted by computer analysis, primer pair EF4-EF3 appeared slightly biased to amplify Basidiomycota and Zygomycota, whereas EF4-fung5 amplified mainly Ascomycota. The 61 clones that were sequenced matched the sequences of 24 different species in the Ribosomal Database Project (RDP) database. Similarity values ranged from 0.676 to 1. Temperature gradient gel electrophoresis (TGGE) analysis of the fungal community in the wheat rhizosphere of a microcosm experiment was carried out after amplification of total DNA with both primer pairs. This resulted in reproducible, distinctive fingerprints, confirming the difference in amplification specificity. Clear banding patterns were obtained with soil and rhizosphere samples by using both primer sets in combination. By comparing the electrophoretic mobility of community fingerprint bands to that of the bands obtained with separate clones, some could be tentatively identified. While 18S-rDNA sequences do not always provide the taxonomic resolution to identify fungal species and strains, they do provide information on the diversity and dynamics of groups of related species in environmental samples with sufficient resolution to produce discrete bands which can be separated by TGGE. This combination of 18S-rDNA PCR amplification and TGGE community analysis should allow study of the diversity, composition, and dynamics of the fungal community in bulk soil and in the rhizosphere.  相似文献   

10.
The diversity of endophytic bacterial populations of potato (Solanum tuberosum cv Desirée) was assessed using a combination of dilution plating of plant macerates followed by isolation and characterization of isolates, and direct PCR-DGGE on the basis of DNA extracted from plants. The culturable endophytic bacterial communities detected in potato stem bases as well as in roots were in most cases on the order 103 to 105 CFU g−1 of fresh plant tissue. Dilution plating revealed that a range of bacterial types dominated these populations. Dominant isolates fell into the α and γ subgroups of the Proteobacteria, as well as in the Flavobacterium/Cytophaga group. Different representatives of the Firmicutes were also found. The most frequently isolated strains (>5% of the total) were characterized as different Pseudomonas spp. (including P. aureofaciens, P. corrugata, and P. putida), Agrobacterium radiobacter, Stenotrophomonas maltophilia, and Flavobacterium resinovorans, using fatty acid methyl ester (FAME) analysis and/or sequencing of their partial 16S ribosomal RNA genes. Other Proteobacteria or Firmicutes were also found, albeit infrequently, and mainly in potato stem tissue. The fate of three putative potato endophytes, Stenotrophomonas maltophilia, Bacillus sp., and Sphingomonas paucimobilis, was monitored following their release into potato plants via injection, via root dipping, or via the soil. Following stem injection, the S. maltophilia and Bacillus inoculants could be tracked over time periods of, respectively, 22 and 1 day(s) by dilution plating as well as via PCR-DGGE. However, only S. maltophilia was able to colonize, and persist in, plant tissue from soil or dipped roots. S. paucimobilis was never recovered from the plant irrespective of the mode of introduction. The diversity of the indigenous bacterial flora associated with potato was then monitored via PCR-DGGE. The patterns obtained revealed the existence of bacterial communities of limited complexity, with communities from potato stems typically differing from those from stem peel and roots. Evidence was obtained for the endophytic occurrence of a range of organisms falling into the α, β, and γ subgroups of the Proteobacteria as well as in the Firmicutes. Several of the sequences found matched those from isolates, suggesting that the molecular evidence reported culturable organisms. However, a number of sequences did not have matching sequences from isolates, suggesting that non-culturable or as-yet-uncultured endophytic organisms were being detected.  相似文献   

11.
A group-specific PCR-based denaturing gradient gel electrophoresis (DGGE) method was developed and combined with group-specific clone library analysis to investigate the diversity of the Clostridium leptum subgroup in human feces. PCR products (length, 239 bp) were amplified using C. leptum cluster-specific primers and were well separated by DGGE. The DGGE patterns of fecal amplicons from 11 human individuals revealed host-specific profiles; the patterns for fecal samples collected from a child for 3 years demonstrated the structural succession of the population in the first 2 years and its stability in the third year. A clone library was constructed with 100 clones consisting of 1,143-bp inserts of 16S rRNA gene fragments that were amplified from one adult fecal DNA with one forward universal bacterial primer and one reverse group-specific primer. Eighty-six of the clones produced the 239-bp C. leptum cluster-specific amplicons, and the remaining 14 clones did not produce these amplicons but still phylogenetically belong to the subgroup. Sixty-four percent of the clones were related to Faecalibacterium prausnitzii (similarity, 97 to 99%), 6% were related to Subdoligranulum variabile (similarity, ~99%), 2% were related to butyrate-producing bacterium A2-207 (similarity, 99%), and 28% were not identified at the species level. The identities of most bands in the DGGE profiles for the same adult were determined by comigration analysis with the 86 clones that harbored the 239-bp group-specific fragments. Our results suggest that DGGE combined with clone library analysis is an effective technique for monitoring and analyzing the composition of this important population in the human gut flora.  相似文献   

12.
Here, we describe a three-step nested-PCR-denaturing gradient gel electrophoresis (DGGE) strategy to detect sulfate-reducing bacteria (SRB) in complex microbial communities from industrial bioreactors. In the first step, the nearly complete 16S rRNA gene was amplified using bacterial primers. Subsequently, this product was used as a template in a second PCR with group-specific SRB primers. A third round of amplification was conducted to obtain fragments suitable for DGGE. The largest number of bands was observed in DGGE patterns of products obtained with primers specific for the Desulfovibrio-Desulfomicrobium group, indicating a large diversity of these SRBs. In addition, members of other phylogenetic SRB groups, i.e., Desulfotomaculum, Desulfobulbus, and Desulfococcus-Desulfonema-Desulfosarcina, were detected. Bands corresponding to Desulfobacterium and Desulfobacter were not detected in the bioreactor samples. Comparative sequence analysis of excised DGGE bands revealed the identity of the community members. The developed three-step PCR-DGGE strategy is a welcome tool for studying the diversity of sulfate-reducing bacteria.  相似文献   

13.
温度梯度凝胶电泳技术及应用   总被引:3,自引:0,他引:3  
温度梯度凝胶电泳(TGGE)是一种用于检测核酸序列变异和点突变的电泳方法.该法利用不同构象的核酸分子具有不同的变性温度(Tm)来进行分离.TGGE方法具有分辨能力高、重复性好和节省时间的特点,可广泛应用于分子生物学研究领域.  相似文献   

14.
Different hypervariable (V) regions of the archaeal 16S rRNA gene (rrs) were compared systematically to establish a preferred V region(s) for use in Archaea-specific PCR-denaturing gradient gel electrophoresis (DGGE). The PCR products of the V3 region produced the most informative DGGE profiles and permitted identification of common methanogens from rumen samples from sheep. This study also showed that different methanogens might be detected when different V regions are targeted by PCR-DGGE. Dietary fat appeared to transiently stimulate Methanosphaera stadtmanae but inhibit Methanobrevibacter sp. strain AbM4 in rumen samples.  相似文献   

15.
16.
17.
We developed and tested a set of primers for amplification of a region of the 24S a-subunit rRNA genes (24S rDNA) specific to Kinetoplastida (Protozoa). The reverse primer was supplied with a GC rich region in the 5? end in order to make the PCR product suitable for analysis by denaturing gradient gel electrophoresis (DGGE). PCR product was obtained from all the kinetoplastids tested and no PCR product was obtained from any other Eukaryotes or Prokaryotes tested. It was possible to distinguish between all pure cultures of kinetoplastids by denaturing gradient gel electrophoresis in gels ranging from 20% to 60% denaturants. PCR-DGGE analysis of DNA purified from lake sediment revealed approximately 20 bands indicating high kinetoplastid diversity. Direct cloning and sequencing of 24S rDNA sequences retrieved from the lake sediment by PCR also showed high kinetoplastid diversity. Of 43 clones, 27 different sequences were found. Alignments and phylogenetic analysis showed that a majority of the sequences were most closely related to the Bodonidae. Four sequences were closer to the Trypanosomatidae, whereas three sequences fell outside both groups. The PCR-DGGE procedure developed in this study has been shown to be useful for distinguishing between different kinetoplastid species. Thus, it may be a useful tool for evaluating the genetic diversity of this group in environmental samples, e.g., as a result of perturbation. Another possible application of this method is in fast and accurate screening for the presence and identification of pathological parasitic Kinetoplastida from environmental samples and for diagnostics of human and animal infections.  相似文献   

18.
The diversity and stability of the fecal bacterial microbiota in weaning pigs was studied after introduction of an exogenous Lactobacillus reuteri strain, MM53, using a combination of cultivation and techniques based on genes encoding 16S rRNA (16S rDNA). Piglets (n = 9) were assigned to three treatment groups (control, daily dosed, and 4th-day dosed), and fresh fecal samples were collected daily. Dosed animals received 2.5 × 1010 CFU of antibiotic-resistant L. reuteri MM53 daily or every 4th day. Mean Lactobacillus counts for the three groups ranged from 1 × 109 to 4 × 109 CFU/g of feces. Enumeration of strain L. reuteri MM53 on MRS agar (Difco) plates containing streptomycin and rifampin showed that the introduced strain fluctuated between 8 × 103 and 5 × 106 CFU/g of feces in the two dosed groups. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments, with primers specific for variable regions 1 and 3 (V1 and V3), was used to profile complexity of fecal bacterial populations. Analysis of DGGE banding profiles indicated that each individual maintained a unique fecal bacterial population that was stable over time, suggesting a strong host influence. In addition, individual DGGE patterns could be separated into distinct time-dependent clusters. Primers designed specifically to restrict DGGE analysis to a select group of lactobacilli allowed examination of interspecies relationships and abundance. Based on relative band migration distance and sequence determination, L. reuteri was distinguishable within the V1 region 16S rDNA gene patterns. Daily fluctuations in specific bands within these profiles were observed, which revealed an antagonistic relationship between L. reuteri MM53 (band V1-3) and another indigenous Lactobacillus assemblage (band V1-6).  相似文献   

19.
We describe a new PCR-based method for distinguishing human and cow fecal contamination in coastal waters without culturing indicator organisms, and we show that the method can be used to track bacterial marker sequences in complex environments. We identified two human-specific genetic markers and five cow-specific genetic markers in fecal samples by amplifying 16S ribosomal DNA (rDNA) fragments from members of the genus Bifidobacterium and the Bacteroides-Prevotella group and performing length heterogeneity PCR and terminal restriction fragment length polymorphism analyses. Host-specific patterns suggested that there are species composition differences in the Bifidobacterium and Bacteroides-Prevotella populations of human and cow feces. The patterns were highly reproducible among different hosts belonging to the same species. Additionally, all host-specific genetic markers were detected in water samples collected from areas frequently contaminated with fecal pollution. Ease of detection and longer survival in water made Bacteroides-Prevotella indicators better than Bifidobacterium indicators. Fecal 16S rDNA sequences corresponding to our Bacteroides-Prevotella markers comprised closely related gene clusters, none of which exactly matched previously published Bacteroides or Prevotella sequences. Our method detected host-specific markers in water at pollutant concentrations of 2.8 × 10−5 to 2.8 × 10−7 g (dry weight) of feces/liter and 6.8 × 10−7 g (dry weight) of sewage/liter. Although our aim was to identify nonpoint sources of fecal contamination, the method described here should be widely applicable for monitoring spatial and temporal fluctuations in specific bacterial groups in natural environments.  相似文献   

20.
To determine the significance of differences between clonal libraries of environmental rRNA gene sequences, differences between homologous coverage curves, CX(D), and heterologous coverage curves, CXY(D), were calculated by a Cramér-von Mises-type statistic and compared by a Monte Carlo test procedure. This method successfully distinguished rRNA gene sequence libraries from soil and bioreactors and correctly failed to find differences between libraries of the same composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号