首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
O'Hara  G. W.  Hartzook  A.  Bell  R. W.  Loneragan  J. F. 《Plant and Soil》1993,155(1):333-336
The effects of Bradyrhizobium (strains NC92 and TAL1000) and Fe supply on nodulation and nitrogen fixation of two peanut (Arachis hypogaea L.) cultivars (cv. Tainan 9 (Fe inefficient) and cv. 71-234 (Fe efficient)) grown under Fe deficient conditions (imposed by adding 40% CaCO3 to a ferruginous soil) were examined in a glasshouse experiment. When inoculated with TAL1000 without Fe, both cultivars had low shoot N concentration, very low nodule numbers and weight and no measurable acetylene reduction activity per plant. Inoculation with NC92 without Fe increased all these parameters substantially; addition of Fe with NC92 had no further effect on N concentration but doubled nodule number, weight and acetylene reduction activity per plant. Addition of Fe with TAL1000 increased all parameters to the same level as Fe+NC92, indicating that the poorer nodulation and N2 fixation of TAL1000 in the absence of Fe, resulted from a poorer ability in getting its Fe supply from the alkaline soil. The nodules from all treatments with measurable activity had the same specific acetylene reduction activity suggesting that Fe deficiency limited nodule development.The results support previous suggestions that Bradyrhizobium strains differ greatly in their ability to obtain Fe from soils and that selection of Fe efficient strains could complement plant breeding in the selection of legume crops for Fe deficient soils.  相似文献   

2.
Lentils (Lens esculenta Moench, cv. Tekoas) grown in a nutrient solution containing 15 millimolar nitrate had 84% fewer nodules than lentils grown in nitrate-free nutrient solution. Nodules from the nitrate-grown plants weighed 71% less than nodules from the nitrate-free plants. Nitrate-grown plants also fixed much less nitrogen (measured by acetylene reduction) than the nitrate-free plants. When lentils were grown in a solution containing 15 millimolar nitrate and 75 millimolar fructose, glucose, or sucrose, however, the nitrogen fixation activity of their nodules was similar to that of nodules from nitrate-free plants. Leaves of lentils grown in the nitrate-sugar solutions had only about 7% as much nitrate reductase activity and accumulated only 10% as much nitrate as leaves from lentils grown in the nitrate solution alone. Roots of lentils grown in the nitrate-sugar solutions had similar nitrate reductase activity but accumulated only 17 to 25% as much nitrate as roots from lentils grown in the nitrate solution. The results indicate that the added sugars alleviated the inhibitory effects of nitrate on symbiotic nitrogen fixation not only by increasing the carbohydrate supply so lentils could support both nitrogen fixation and nitrate reduction but also by inhibiting the accumulation of nitrate and, hence, lowering nitrate reductase activity in the leaves.  相似文献   

3.
Two white clover cultivars were inoculated with two Rhizobium leguminosarum bv. trifolii strains in a factorial series of experiments. Plants were grown in axenic conditions in nitrogen free nutrient solution in a controlled environment room. Variations in nitrogen fixation were dependent partly upon general strain effects, partly upon general cultivar effects but there were also substantial differences attributable to precise interactions between specific combinations. The physiological and biochemical basis of these differences was examined. There were variations in the onset of nodulation and nitrogenase (acetylene reduction) activity. The rate at which nitrogenase activity developed also differed between associations as did the average size and number of nodules but none of these effects correlated well with differences in plant dry matter accumulation. Studies on nodule biochemistry revealed that the major nitrogen fixation enzymes were present in all four associations. Nodule protein content and enzyme activity (on a g nodule fresh weight basis) were substantially greater in associations formed by the more effective strain but cannot explain the interactive effect on dry matter accumulation. The relevance of these data to our understanding of factors regulating variations in nitrogen fixation is discussed.  相似文献   

4.
Previously, Bradyrhizobium japonicum USDA 110 was shown to contain colony morphology variants which differed in nitrogen-fixing ability. Mannitol-utilizing derivatives L1-110 and L2-110 have been shown to be devoid of symbiotic nitrogen fixation ability, and non-mannitol-utilizing derivatives I-110 and S-110 have been shown to be efficient at nitrogen fixation. The objectives of this study were to determine the effect of media carbon sources on the symbiotic N2-fixing ability of strain USDA 110 and to compare the effectiveness of strain USDA 110 and derivative I-110. Based on acetylene reduction activity and the nitrogen content of 41-day-old soybean plants, neither derivative I-110 nor cultures of USDA 110 grown in media favoring non-mannitol-using derivatives had symbiotic nitrogen fixation that was statistically superior to that of cultures of USDA 110 grown in media favoring mannitol-using derivatives. In another experiment 200 individual nodules formed by strain USDA 110 grown in yeast extract gluconate were screened for colony morphology of occupying variant(s) and acetylene reduction activity. Nodules occupied by mannitol-using derivatives (large colony type on 0.1% yeast extract-0.05% K2HPO4-0.08% MgSO4 · 7H2O-0.02% NaCl-0.001% FeCl3 · 6H2O [pH 6.7] with 1% mannitol [YEM] plates) had a mean acetylene reduction activity equal to that of nodules occupied by non-mannitol-using derivatives (small colony type on YEM plates). A total of 20 large colonial derivatives and 10 small colonial derivatives (I-110-like) were isolated and purified by repeated culture in YEM and YEG (same as YEM except 1% gluconate instead of 1% mannitol) media, respectively, followed by dilution in solutions containing 0.05% Tween 40. After 25 days of growth, soybean plants inoculated with the large colony isolates had mean whole-plant acetylene reduction activity, whole-plant dry weight, and whole-plant nitrogen contents equal to or better than those of plants inoculated with either the small colony isolates (I-110-like) or the I-110 (non-mannitol-using) derivative. Hence, the existence of a mannitol-utilizing derivative that fixes nitrogen in a culture of strain USDA 110 obtained from the U.S. Department of Agriculture, Beltsville, Md., was established. This new USDA 110 derivative was designated as MN-110 because it was a mannitol-utilizing nitrogen-fixing USDA 110 derivative. This derivative was morphologically indistinguishable from the non-nitrogen-fixing derivative L2-110 found in cultures obtained earlier from the U.S. Department of Agriculture, Beltsville. DNA-DNA homology and restriction enzyme analyses indicated that MN-110 is genetically related to other USDA 110 derivatives that have been characterized previously.  相似文献   

5.
When Phaseolus vulgaris L. cv. Kentucky Wonder plants were supplied with various levels of nitrate for 34 days, nodule weight (plant)−1, acetylene reduction activity (g nodule)−1, and sugar concentration in nodules were depressed >60% (7.5 m M nitrate vs nil nitrate). Starch concentration in nodules was more than double the sugar concentration and declined only slightly in response to nitrate level. At the highest level of nitrate, sugar concentration in nodules was 50% greater than that in roots and nodule starch was about 6-fold greater than root starch on a fresh weight basis. When plants were grown with 1 m M nitrate and then supplied with 12 m M nitrate for 7 days, the rapid decline in acetylene reduction activity coincided with a decline in sucrose concentration. However, glucose and fructose concentrations declined only after the largest decrease in acetylene reduction had occurred, and the quantitative decrease in glucose and fructose in nodules was small relative to sucrose. Other results showed that the magnitude of the effect of nitrate on some nodule carbohydrate compounds depends on Rhizobium phaseoli strain and on whether plants were grown with or without nitrate prior to experimental treatments. Some of the results are consistent with the carbohydrate-deprivation hypothesis for inhibition of legume nodules by nitrate. However, there are several complications involved in the interpretation of results of this type, and other possible explanations for the results are suggested.  相似文献   

6.
Summary An in situ device for assaying biological nitrogen fixation in flooded rice soils, using the acetylene reduction method, was developed. Diurnal variations in acetylene reduction by an inoculated field plot and by laboratory-grown cultures of nitrogen-fixing algae showed a prominent single-peak pattern of nitrogenase activity. The peak occurred at mid-day for laboratory-grown algae and at late afternoon for the algae grown in the field plot. Some nitrogenase activity was noted during the night. Acetylene reduction studies in rice fields of Albay province, Philippines, showed an estimated fixation of 18.5 to 33.3 kg N/ha each cropping season for the fields of Puro soil and 2.3 to 5.7 kg N/ha each cropping season for the fields of Santo Domingo soil. re]19751202  相似文献   

7.
Biosynthesis of the iron-molybdenum cofactor of nitrogenase   总被引:3,自引:0,他引:3  
The iron-molybdenum cofactor (FeMo-co) of nitrogenase is a Mo-Fe-S cluster that has been proposed as the site of substrate reduction for the nitrogenase enzyme complex. Biosynthesis of FeMo-co in Klebsiella pneumoniae requires at least six nif (nitrogen fixation) gene products. One of the nif genes, nifV, apparently encodes a homocitrate synthase. The synthesis and accumulation of homocitrate [(R)-2-hydroxy-1,2,4-butanetricarboxylic acid] in K.pneumoniae is correlated to the presence of a functional nifV gene. K.pneumoniae strains with mutations in nifV synthesize and accumulate an aberrant form of FeMo-co. Nitrogenase from NifV- mutants is capable of reducing some of the substrates of nitrogenase effectively (e.g. acetylene), but reduces N2 poorly. With the aid of an in vitro FeMo-co synthesis system, it recently has been established that homocitrate is an endogenous component of FeMo-co. Substitution of homocitrate with other carboxylic acids results in the formation of aberrant forms of FeMo-co with altered substrate reduction capability.  相似文献   

8.
Summary Effects of three solution aluminium concentrations (0, 25, and 100M) on nitrogen fixation by well-nodulated plants ofStylosanthes hamata, Stylosanthes humilis andStylosanthes scabra are reported. Plants were inoculated with Rhizobium CB756 and grown for 21 days in an aluminium-free nutrient solution at pH 5.3 before imposition of the aluminium treatments.Nitrogen fixation was measured both by the increase in total nitrogen content of the plants and acetylene reduction in roots of plants harvested at 10 and 20 days after imposition of the aluminium treatments. Solution aluminium concentrations as high as 100M, had no detrimental effect on nitrogen fixation in any species.  相似文献   

9.
The aquatic legume Neptunia plena (L.) Benth. was grown in non-aeratedwater culture or vermiculite. Growth, nodulation, nitrogen fixationand nodule physiology were investigated. Over an 80-d period,plants grew and fixed nitrogen and carbon equally well in bothrooting media, although distribution of growth between plantparts varied. Total nodule dry weights and volumes were similarbut vermiculite-grown plants had three times as many (smaller)nodules than those grown in water. Oxygen diffusion resistanceof nodules exposed to 21% oxygen and 10% acetylene did not differsignificantly. Both treatments showed similar declines in rootrespiration and acetylene reduction activity (approx. 10%) whenroot systems were exposed to stepped decreases and increasesin rhizosphere oxygen concentration. However, nitrogenase activityof aquatically grown plants was irreversibly inhibited by rapidexposure of nodules to ambient air, whereas vermiculite-grownplants were unaffected. Aeration of water-cultured N. plenareduced stem length (but not mass) and number of nodules perplant. The concentration of nitrogen fixation by 163%. PossibleO2 transport pathways from the shoot atmosphere to roots andnodules are discussed. Aquatic legume, diffusion resistance, Neptunia plena, nitrogen fixation, oxygen, root nodules  相似文献   

10.
Sorghum and corn breeding lines were grown in soil in field and greenhouse experiments with and without an inoculum of N2-fixing in Spirillum strains from Brazil. Estimated rates of N2 fixation associated with field-grown corn and sorghum plants were less than 4 g of N2/ha per day. The mean estimated N2-fixation rates determined on segments of roots from corn inoculated with Spirillum and grown in the greenhouse at 24 to 27 degrees C were 15 g of N2/ha per day (16 inbreds), 25 g of N2/ha per day (six hybrids), and 165 g of N2/ha per day for one hybird which was heavily inoculated. The corresponding mean rates determined from measurements of in situ cultures of the same series of corn plants (i.e., 16 inbreds, six hybrids, and one heavily inoculated hybrid) were 0.4, 2.3, and 1.1 g of N2/ha per day, respectively. Lower rates of C2H2 reduction were associated with control corn cultures which had been treated with autoclaved Spirillum than with cultures inoculated with live Spirillum. No C2H2 reduction was detected in plant cultures treated with ammonium nitrate. Numbers of nitrogen-fixing bacteria on excised roots of corn plants increased an average of about 30-fold during an overnight preincubation period, and as a result acetylene reduction assays of root samples after preincubation failed to serve as a valid basis for estimating N2 fixation by corn in pot cultures. Plants grown without added nitrogen either with or without inoculum exhibited severe symptoms of nitrogen deficiency and in most cases produced significantly less dry weight than those supplied with fixed nitrogen. Although substantial rates of C2H2 reduction by excised corn roots were observed after preincubation under limited oxygen, the yield and nitrogen content of inoculated plants and the C2H2-reduction rates by inoculated pot cultures of corn, in situ, provided no evidence of appreciable N2 fixation.  相似文献   

11.
Subterranean clover (Trifolium subterraneum L.) cv. ‘Woogenellup’ swards were grown at 10, 15, 20 and 25 Cwith a 12 h photoperiod of 500 or 1000 µmol m–2s–1 [low and high photosynthetic photon flux density (PPFD)].Nitrogen-fixing swards received nutrient solution lacking combinednitrogen while control swards received a complete nutrient solution.Growth was measured by infra-red analysis of carbon dioxideexchange and by accumulation of dry matter. Swards were harvestedat intervals between 95 and 570 g d. wt m–2 for estimationof nitrogenase activity by acetylene reduction and hydrogenevolution assays. Nitrogen fixation was also measured by increasein organic nitrogen. The growth rate was highest at 10 C at low PPFD, and at 10–15C at high PPFD. Nitrogen-fixing swards grew slower than thosereceiving combined nitrogen. Nitrogen fixation measured by increasein organic nitrogen responded similarly to the growth rate,as did acetylene reduction between 10 and 20 C. At 25 C therelationship between acetylene reduction and nitrogen fixationwas distrupted. The difference between the rates of acetylenereduction and hydrogen evolution, theoretically proportionalto nitrogen fixation, was not a reliable indicator of nitrogenfixation because hydrogen uptake developed. Trifolium subterraneum L, subterranean clover, growth, nitrogen fixation, temperature, acetylene reduction  相似文献   

12.
Rhizobium sp. 127E15 fixed nitrogen asymbiotically, when grown in induction media. Highest level of acetylene reduction activity was reached in LNB5 medium and in media containing a combination of two sugars, sucrose and arabinose. In the induced cultures, large pleomorphic forms of bacteroids were produced. Considerable acetylene reduction activity was recorded in the rhizosphere of the lima bean plants that were inoculated with rhizobia and grown in pot cultures. Trace amounts of activity could also be detected in the rhizobia adhering to the rhizoplane.  相似文献   

13.
To understand the role of salicylic acid (SA) in alleviating cadmium (Cd) toxicity in Kentucky bluegrass (Poa pratensis L.), we investigated the changes of biochemical and physiological indexes in five-week-old Kentucky bluegrass seedlings exposed to 0, 5, 10 or 50 μM Cd with or without 500 μM SA for 7 d. Results showed that, compared to the Cd treatment applied alone, 500 μM SA pretreatment significantly decreased Cd accumulations and increased the chlorophyll level, growth and nutrient elements content (K, Ca, Mg and Fe) in plants, accompanying with the reduction in malondialdehyde and hydrogen peroxide contents. Furthermore, SA pretreatment enhanced remarkably the superoxide dismutase, ascorbate peroxidase and peroxidase activity in the Cd-stressed plants, but decreased catalase activity. Overall, SA might regulate the antioxidant defense activities, reduce Cd uptake and stimulate nutrient elements absorption in Cd-treated with Kentucky bluegrass, thereby improving its resistance to Cd stress.  相似文献   

14.
A. Sellstedt  K. Huss-Danell 《Planta》1986,167(3):387-394
A single clone of Alnus incana (L.) Moench was grown in a controlled-environment chamber. The plants were either inoculated with Frankia and fixed atmospheric nitrogen or were left uninoculated but received ammonium at the same rate as the first group fixed their nitrogen. Nitrogen fixation was calculated from frequenct measurements of acetylene reduction and hydrogen evolution. The diurnal variation of acetylene reduction was also taken into account. The relative efficiency of nitrogenase could be used in the calculations of fixed nitrogen since the Frankia used did not show any detectable hydrogenase activity. Alders fixing nitrogen developed more biomass, longer shoots, larger leaf areas and contained more nitrogen than alders receiving ammonium. In one experiment, almost all ammonium given to the non-nodulated alders was taken up and 15% of the nitrogen taken up was excreted. In the other experiment, 34% of the ammonium was left in the nutrient solution and 8% of the nitrogen taken up was excreted. Alders inoculated with Frankia did not excrete any detectable amount of nitrogen. It seems that the energy demand for nitrogen fixation is not so high that biomass production in alders is retarded. The symbiotic system of A. incana and Frankia seems to be more efficient in utilizing its nitrogen than non-symbiotic A. incana receiving ammonium.  相似文献   

15.
Summary Acacia greggi, Cercidium floridium, and Olneya tesota seeds were inoculated with soil from beneath mature native desert trees and grown in the greenhouse on a nitrogen free media. Olneya tesota seedlings nodulated and reduced acetylene to ethylene. Nodulation or acetylene reduction was not observed in A. greggi or C. floridium. This is the first report of nodulation and nitrogen fixation in Olneya tesota.  相似文献   

16.
Summary Millet plants (Pennisetum glaucum) were grown at three levels of nitrogen fertilization with and without an inoculum of live nitrogen-fixing Azospirillum cells. The highest average rate of nitrogen fixation as estimated from acetylene reduction by excised preincubated roots was only 23g N2 fixed per ha per day and occurred after treatment with low levels of nitrogen amendment. The average rates of acetylene reduction for intact plants at all treatments were also low. The lack of significant nitrogen fixation due to an Azospirillum-millet association in this study was substantiated by plant dry weight analysis, and determination of the nitrogen content of plants, pot leachate, and soil. There was significant correlation between the total nitrogen content of the plants per pot at the termination of the experiment and the amount of nitrogen fertilizer added initially, but there was no effect of inoculum on final total nitrogen content.  相似文献   

17.
Acetylene reduction activity of intact rice plants was measured in closed assay chambers with plants grown in water culture. Acetylene was added to the liquid medium, and the ethylene formed was measured from both gas and liquid phases. After cutoff of mineral nitrogen supply and inoculation of fresh soil, rice plants grown from the seedling stage in water culture exhibited acetylene reduction activity after a lag period. However, rice plants grown in a paddy field and transferred to water culture were more suitable for N2 fixation studies because of their higher, less variable acetylene reduction activity. The time course of acetylene reduction was monitored by continuous circulation of gas between the gas phase and the liquid phase, and the result showed an initial 2- or 3-h period of lower activity, followed by increased and almost constant activity up to 24 h. The effects on acetylene reduction activity of aeration, ammonium, chloramphenicol, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea addition are reported. Ammonium was inhibitive at 0.33 mM, and its depressive effect was alleviated by ammonium uptake by the plants.  相似文献   

18.
Field bean (Vicia faba L.) cv. Maris Bead seeds were inoculated with Rhizobium Catalogue No. 1001, supplied by Rothamsted Experimental Station, and grown in sand culture supplied with a complete nutrient solution which included nitrate at either 1.5 or 6.0 mM. Nodules were detached from the roots at intervals during plant development and their rates of nitrogen fixation estimated by both acetylene reduction and 15N gas technique. There was a constant relationship, independent of nitrate supply, between the results obtained by these two methods at all samplings. The amounts of acetylene reduced divided by a factor of 5.75 gave the amount of true nitrogen fixation; this factor is about twice the theoretical value. It is suggested that this discrepancy arose because, with acetylene, all the electrons available to the nitrogenase were used to form ethylene, whereas during normal fixation only about half the electron supply was used to fix nitrogen, the remainder having been consumed in the production of hydrogen gas.  相似文献   

19.
The response to water stress was studied on white clover grown hydroponically. Two varieties (Crau and Huia) were both subjected to a moderate and a more-severe stress, induced by polyethylene glycol (10 and 20% respectively), in the presence of a nutrient solution poor in potassium (K1=0.005 mM), or abundantly supplied (K2=5mM). Dawn water potential and nitrogen fixation (acetylene reduction activity) decreased with the increasing stress. Conversely, the stomatal resistance increased whenosmoticum was added. Crau had a lower stomatal resistance to the deficit, than did Huia. In relation with the K supply, treatment K2 confirmed the superiority of Crau. Crau also showed greater nodule mass and number than Huia. The data show relationships between dawn water potential, stomatal resistance and nitrogen fixation activity.  相似文献   

20.
Water use and yield of tomatoes under limited water and excess boron   总被引:1,自引:0,他引:1  
Ben-Gal  Alon  Shani  Uri 《Plant and Soil》2003,256(1):179-186
The role of tripartite associations among Frankia, Alpova diplophloeus (an ectomycorrhizal fungus) and Alnus tenuifolia in growth, nitrogen fixation, ectomycorrhizal formation, and mineral acquisition of A. tenuifolia was investigated. Seedlings of A. tenuifolia were planted in pots containing a mixture of ground basalt–perlite, or perlite alone, which served as the control. The seedlings were inoculated with Frankia isolated from root nodules of alder, followed by spores of A. diplophloeus and grown for 5 months in a greenhouse. The seedlings grown in the pots with a mixture of ground basalt–perlite after dual inoculation with Frankia and A. diplophloeus had the heaviest shoots and root nodules in dry weight, and showed the greatest nitrogen-fixing ability measured by acetylene reduction. Ectomycorrhizae formed with A. diplophloeus increased when this fungus was inoculated together with Frankia. The mineral composition (P, K, Ca, Fe, Mg, Mn, Na, Si and Al) in the seedlings was also determined. The results of these experiments showed that the tripartite associations could improve the growth, nitrogen fixation and mineral acquisition (rock solubilization) of A. tenuifolia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号