首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe summer weather in Greenland and Arctic Canada in 1972 and 1974 caused very poor breeding success and elevated adult mortality in red knots Calidris canutus islandica. We show that those individual knots that are known to have survived these summers were in better than average nutritional condition shortly before departure from their late spring staging area in west Iceland. The condition index of previously banded or subsequently recovered birds captured in Iceland was positively related to the number of summers they were known to have survived. Body stores carried from the last spring staging area to the breeding grounds appear to offer Arctic-breeding shorebirds significant selective advantages: they are used for physical transformation from migration to breeding condition, and in years when weather is difficult may enable survival after arrival on the breeding grounds.  相似文献   

2.
Anthony D .  Fox  Christian M .  Glahder  Alyn J .  Walsh 《Oikos》2003,103(2):415-425
Greenland white‐fronted geese accumulate body mass throughout late winter in preparation for migration after mid‐April to spring staging areas in Iceland. This analysis presents field assessment of abdominal fat deposits (API) from large samples of marked birds which showed increasing rates of fuel deposition throughout January–April. Historical records show that geese rarely depart en masse before 17 April, a pattern followed by all but one of the tagged birds. Timed positions obtained from 12 geese fitted with satellite transmitters in 1997, 1998 and 1999 suggested that all geese departed winter quarters on tailwinds between 16 and 19 April. Tracked geese flew directly to staging areas in Iceland, although one staged for 10 days in Northern Ireland in 1997 and another may have stopped briefly in western Scotland. Average migration duration of all tagged birds departing Ireland (including the 1997 bird that stopped over within Ireland) was 25 hours (range 13–77). Four geese apparently overshot and returned to Iceland during strong E to ESE winds. APIs in Iceland showed more rapid and linear increases in stores during the mean 19‐day (range 13–22) staging period there than on the winter quarters. Geese continued their migration to Greenland when APIs attained or exceeded levels at departure from Ireland and all departed on assisting tailwinds between 1 and 11 May. Tracked birds continued the journey to West Greenland in between 24 and 261 (mean 82) hours, although one bird turned back during the traverse of the Greenland Ice Cap and summered on the east coast. Seven of the birds staged for 1–20 hours at, or near, the East Greenland coast and several made slow progress crossing the inland ice, all in the direction of their ultimate destination (i.e. not necessarily taking the lowest or shortest crossing routes). It is suggested that the energy‐savings of departing on tailwinds may favour geese to wait for such conditions once threshold fat storage levels have been reached, but more research is needed to confirm this.  相似文献   

3.
According to migration theory and several empirical studies, long‐distance migrants are more time‐limited during spring migration and should therefore migrate faster in spring than in autumn. Competition for the best breeding sites is supposed to be the main driver, but timing of migration is often also influenced by environmental factors such as food availability and wind conditions. Using GPS tags, we tracked 65 greater white‐fronted geese Anser albifrons migrating between western Europe and the Russian Arctic during spring and autumn migration over six different years. Contrary to theory, our birds took considerably longer for spring migration (83 days) than autumn migration (42 days). This difference in duration was mainly determined by time spent at stopovers. Timing and space use during migration suggest that the birds were using different strategies in the two seasons: In spring they spread out in a wide front to acquire extra energy stores in many successive stopover sites (to fuel capital breeding), which is in accordance with previous results that white‐fronted geese follow the green wave of spring growth. In autumn they filled up their stores close to the breeding grounds and waited for supportive wind conditions to quickly move to their wintering grounds. Selection for supportive winds was stronger in autumn, when general wind conditions were less favourable than in spring, leading to similar flight speeds in the two seasons. In combination with less stopover time in autumn this led to faster autumn than spring migration. White‐fronted geese thus differ from theory that spring migration is faster than autumn migration. We expect our findings of different decision rules between the two migratory seasons to apply more generally, in particular in large birds in which capital breeding is common, and in birds that meet other environmental conditions along their migration route in autumn than in spring.  相似文献   

4.
Dunlin Calidris alpina is one of the most abundant shorebirds using coastal habitats in the East Atlantic migratory flyway, that links arctic breeding locations (Greenland to Siberia) with wintering grounds (West Europe to West Africa). Differential migration and winter segregation between populations have been indicated by morphometrics and ringing recoveries. Here, we analyse the potential of genetic markers (mitochondrial DNA – mtDNA) to validate and enhance such findings. We compared mtDNA haplotypes frequencies at different wintering sites (from north-west Europe to West Africa). All birds from West Africa had western (European) haplotypes, while the eastern (Siberian) haplotypes were only present in European winter samples, reaching higher frequencies further north in Europe. Compilation of published results from migrating birds also confirmed these differences, with the sole presence of European haplotypes in Iberia and West Africa and increasingly higher frequencies of Siberian haplotypes from south-west to north-west Europe. Comparison with published haplotype frequencies of breeding populations shows that birds from Greenland, Iceland, and North Europe were predominant in wintering grounds in West Africa, while populations wintering in West Europe originated from more eastern breeding grounds (e.g. North Russia). These results show that genetic markers can be used to enhance the integrative monitoring of wintering and breeding populations, by providing biogeographical evidence that validate the winter segregation of breeding populations.  相似文献   

5.
John  Wilcock 《Ibis》1965,107(3):316-325
Radar observations through one autumn in Aberdeenshire are described showing that more migration takes place in anticyclonic weather than transitional weather, and even less migration takes place in disturbed weather. More migration is detected by radar with following winds than with opposed winds.
Comparison of data collected in Norfolk and Aberdeenshire during one season at each shows that more migration is detected by radar in Norfolk, and westward movements, which are a feature of migration into Norfolk, appear in Aberdeenshire only when birds are first drifted northwards.
Dawn ascent and reorientation movements of birds in the northern North Sea are described, showing that changes in heading were consistently between S.W./S.S.W. and S.S.E. during the autumn studied.
Weather data, radar data and ground observer data from Aberdeenshire and the Isle of May Bird Observatory were analyzed and show again that the normal migration pattern is to fly high with following winds and low only with opposing winds as in Norfolk. However, the weather in Aberdeenshire was more disturbed than it had been in Norfolk, with the consequence that weather factors, other than wind, which affect the normal migration pattérn were found to be much more common.  相似文献   

6.
We tested two hypotheses that have been proposed to explain why large numbers of sharpshinned hawks (Accipiter striatus) are counted during fall migration at Cape May Point, New Jersey. The most popular hypothesis, which suggests that hawks are drifted to the coast by west to northwest winds, was rejected in favour of the alternative hypothesis, which suggests that the large numbers of hawks seen on west winds resulted from a sampling bias. Using modified marine radar, we found that sharp-shinned hawks flew significantly lower at Cape May on days with west winds than on days with other winds, making them easier to count. The altitude of flight on days with other winds was regularly greater than 400 m, and hawks were difficult to detect without the radar. Migration traffic rates at Cape May were consistently greater than the broad-front migration rates computed from counts taken 36 km north and inland from Cape May. Flight directions measured at the inland site, away from topographic leading lines, showed that sharp-shinned hawks compensate for different wind directions by adjusting their headings, and the direction realized on all winds brings them to the coast. Our results suggest that counts of migrating hawks at some topographic features are subject to systematic biases and the conclusions derived from these counts may be erroneous.  相似文献   

7.
Capsule Iceland is a stop‐over site for a population of Purple Sandpipers that winter in Britain. Here, they accumulate fuel loads for onward migration along with birds that have wintered in Iceland.

Aims To establish whether Purple Sandpipers from Britain stop‐over in Iceland during spring migration and, if so, to describe their population structure, changes in mass and moult.

Methods Purple Sandpipers were cannon‐netted on the coast of the Reykjanes Peninsula in southwest Iceland during May 2003 and 2005. Birds were aged, sexed (some by DNA) and standard biometric measurements made. Active body moult was scored.

Results Bill and wing lengths showed that the Purple Sandpipers we caught were similar to one of the populations that winter in Britain rather than Icelandic breeding birds. There were more males than females throughout the migration period (63% males for first‐year‐birds and 67% for adult birds). Accounting for a bias due to a higher percentage of males in a less usual habitat (muddy/sandy bays), the values for rocky sites were 52% males for first‐year birds and 62% for adults. The percentage of first‐year birds was 19% in 2003 and 32% in 2005, though the latter figure was biased by catches in muddy/sandy bays where there was a higher percentage of young birds. The percentage of first‐year birds was 25% on just the rocky shores in 2005. Many birds were in latter stages of body moult, and males were slightly in advance of females. Increasing mass showed that they were preparing for onward migration. The average increase of 0.58 g per day was similar to the rate measured in Orkney at an earlier point on the migration route. However, a high turnover of birds could be the reason for these low values. By late May, and close to the assumed departure date, the Purple Sandpipers of the different age/sex classes had fuel indices of 24–29% (33–42% of the lean mass). This was lower than that for the high Arctic sandpipers (Knots and Sanderlings) leaving southwest Iceland for Greenland and Canada.

Conclusions Our study confirmed that Purple Sandpipers do stop‐over in Iceland, and the possible lower rate of fuel accumulation and smaller amount stored, compared with Knots and Sanderlings, suggests a different migration pattern.  相似文献   

8.
Ecological barriers such as oceans, mountain ranges or glaciers can have a substantial influence on the evolution of animal migration. Along the migration flyway connecting breeding sites in the North American Arctic and wintering grounds in Europe or Africa, nearctic species are confronted with significant barriers such as the Atlantic Ocean and the Greenland icecap. Using geolocation devices, we identified wintering areas used by ringed plovers nesting in the Canadian High‐Arctic and investigated migration strategies used by these nearctic migrants along the transatlantic route. The main wintering area of the ringed plovers (n = 20) was located in western Africa. We found contrasting seasonal migration patterns, with ringed plovers minimizing continuous flight distances over the ocean in spring by making a detour to stop in Iceland. In autumn, however, most individuals crossed the ocean in one direct flight from southern Greenland to western Europe, as far as southern Spain. This likely resulted from prevailing anti‐clockwise winds associated with the Icelandic low‐pressure system. Moreover, the plovers we tracked largely circumvented the Greenland icecap in autumn, but in spring, some plovers apparently crossed the icecap above the 65°N. Our study highlighted the importance of Iceland as a stepping‐stone during the spring migration and showed that small nearctic migrants can perform non‐stop transatlantic flights from Greenland to southern Europe.  相似文献   

9.
Although radar has been used in studies of bird migration for 60 years, there is still no network in Europe for comprehensive monitoring of bird migration. Europe has a dense network of military air surveillance radars but most systems are not directly suitable for reliable bird monitoring. Since the early 1990s, Doppler radars and wind profilers have been introduced in meteorology to measure wind. These wind measurements are known to be contaminated with insect and bird echoes. The aim of the present research is to assess how bird migration information can be deduced from meteorological Doppler radar output. We compare the observations on migrating birds using a dedicated X‐band bird radar with those using a C‐band Doppler weather radar. The observations were collected in the Netherlands, from 1 March to 22 May 2003. In this period, the bird radar showed that densities of more than one bird per km3 are present in 20% of all measurements. Among these measurements, the weather radar correctly recognized 86% of the cases when birds were present; in 38% of the cases with no birds detected by the bird radar, the weather radar claimed bird presence (false positive). The comparison showed that in this study reliable altitudinal density profiles of birds cannot be obtained from the weather radar. However, when integrated over altitude, weather radar reflectivity is correlated with bird radar density. Moreover, bird flight speeds from both radars show good agreement in 78% of cases, and flight direction in 73% of cases. The usefulness of the existing network of weather radars for deducing information on bird migration offers a great opportunity for a European‐wide monitoring network of bird migration.  相似文献   

10.
Migration is a critical period of time with fitness consequences for birds. The development of tracking technologies now allows researchers to examine how different aspects of bird migration affect population dynamics. Weather conditions experienced during migration are expected to influence movements and, subsequently, the timing of arrival and the energetic costs involved. We analysed satellite‐tracking data from 68 Eurasian Woodcock Scolopax rusticola fitted with Argos satellite tags in the British Isles and France (2012–17). First, we evaluated the effect of weather conditions (temperature, humidity, wind speed and direction, atmospheric stability and visibility) on migration movements of individuals. Then we investigated the consequences for breeding success (age ratio) and brood precocity (early‐brood ratio) population‐level indices while accounting for climatic variables on the breeding grounds. Air temperature, wind and relative humidity were the main variables related to migration movements, with high temperatures and northward winds greatly increasing the probability of onward flights, whereas a trend towards greater humidity over 4 days decreased the probability of movement. Breeding success was mostly affected by climatic variables on the breeding grounds. The proportion of juveniles in autumn was negatively correlated with temperature in May, but positively correlated with precipitation in June and July. Brood precocity was poorly explained by the covariates used in this study. Our data for the Eurasian Woodcock indicate that, although weather conditions during spring migration affect migration movements, they do not have a major influence on subsequent breeding success.  相似文献   

11.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

12.
The number of breeding common sandpipers has declined in Britain due to poorer return rates from non‐breeding areas. To investigate little known aspects of their annual cycle, breeding common sandpipers were fitted with geolocators to track their migrations and determine their non‐breeding areas. Ten tagged birds left Scotland on 9 July (median dates and durations are given throughout the abstract). Short‐term staging was carried out by some birds in England and Ireland, then for longer by most birds in Iberia before continuing to West Africa, arriving on 28 July. Six birds spent most of the non‐breeding season (October–February) on the coast of Guinea‐Bissau, suggesting that this is a key area. Single birds occurred in Sierra Leone, Guinea, the Canary Islands and western Sahara. The southward migration from Scotland took 17.5 d (range 1.5–24 d), excluding the initial fuelling period. The first northward movement from Africa was on 12 April. Staging occurred in either Morocco, Iberia or France. Arrival in Scotland was on 2 May. The northward migration took 16 d (range 13.5–20.5 d). The main migration strategy involved short‐ and medium‐range flights, using tail‐winds in most cases. Variation in strategy was associated with departure date; birds that left later staged for shorter durations. Coastal West Africa provides two major habitats for common sandpipers: mudflats associated with mangroves and rice fields. Although the area of mangrove has been depleted, the scale of loss has probably been insufficient to account for the decline in sandpiper numbers. Rice fields are expanding, providing feeding areas for water‐birds. Meteorological data during the migrations suggest that the weather during the southward migration is unlikely to contribute to a population decline but strong cross‐winds or head‐winds during the northward migration to the breeding grounds may do so.  相似文献   

13.
The Purple Sandpiper (Calidris maritima) is a medium‐sized shorebird that breeds in the Arctic and winters along northern Atlantic coastlines. Migration routes and affiliations between breeding grounds and wintering grounds are incompletely understood. Some populations appear to be declining, and future management policies for this species will benefit from understanding their migration patterns. This study used two mitochondrial DNA markers and 10 microsatellite loci to analyze current population structure and historical demographic trends. Samples were obtained from breeding locations in Nunavut (Canada), Iceland, and Svalbard (Norway) and from wintering locations along the coast of Maine (USA), Nova Scotia, New Brunswick, and Newfoundland (Canada), and Scotland (UK). Mitochondrial haplotypes displayed low genetic diversity, and a shallow phylogeny indicating recent divergence. With the exception of the two Canadian breeding populations from Nunavut, there was significant genetic differentiation among samples from all breeding locations; however, none of the breeding populations was a monophyletic group. We also found differentiation between both Iceland and Svalbard breeding populations and North American wintering populations. This pattern of divergence is consistent with a previously proposed migratory pathway between Canadian breeding locations and wintering grounds in the United Kingdom, but argues against migration between breeding grounds in Iceland and Svalbard and wintering grounds in North America. Breeding birds from Svalbard also showed a genetic signature intermediate between Canadian breeders and Icelandic breeders. Our results extend current knowledge of Purple Sandpiper population genetic structure and present new information regarding migration routes to wintering grounds in North America.  相似文献   

14.
The post‐breeding movements of three northeast Atlantic populations (north Greenland, Svalbard and Franz Josef Land) of the ivory gull Pagophila eburnea, a threatened high‐Arctic sea‐ice specialist, were studied between July and December 2007 using 31 satellite transmitters. After leaving their breeding grounds, all birds first dispersed eastward in August–September, to an area extending from the Fram Strait to the northwestern Laptev Sea (off Severnaya Zemlya). Most returned along the same flyway in October–November, hence describing a loop migration before moving south, off east Greenland. Wintering grounds were reached in December, in southeast Greenland and along the Labrador Sea ice‐edge, where Canadian birds also overwinter. One to two birds from each population however continued eastwards towards a third wintering area in the Bering Strait region, hence demonstrating a bi‐directional migration pattern for the populations and elucidating the origin of the birds found in the north Pacific during winter time. Overall, all birds breeding in the northeast Atlantic region used the same flyways, had similar rates of travel, and showed a peak in migratory activity in November. Though the total length of the main flyway, to the Labrador Sea, is only and at most 7500 km on a straight line, the mean total distance travelled by Greenland birds between July and December was 50 000 km when estimated from hourly rates of travel. Our study presents the first comprehensive and complete picture for the post‐breeding movements of the different ivory gull populations breeding in the northeast Atlantic.  相似文献   

15.
A limitation of standardized mist netting for monitoring migration is caused by the lack of knowledge about the relationship between trapped birds and birds flying aloft. Earlier studies related nocturnal radar counts with trapping data of the following day. In this study, we compared for the first time data gathered simultaneously by radar and mist netting, separately for diurnal and nocturnal migration. Trapping numbers were strongly correlated with migratory intensities measured by radar (r>0.6). A multiple regression analysis, including wind speed and wind direction explained 61% of variation in the number of captures. During the night, and particularly with favourable winds, birds flew at higher altitudes and hence escaped the nets to a higher proportion. The number of nocturnal migrants trapped during daytime was well correlated with migratory intensities observed by radar in the preceding night. The diurnal time patterns, however, revealed fundamental differences between trapping counts and radar observations. This was mainly due to increasing and decreasing flight altitudes in the course of the night, and by the limitations of the radar technique that underestimates migratory intensities during the day when birds aggregate in flocks. In relation to the migratory intensity recorded by radar, diurnal migrants are trapped in a much higher proportion than nocturnal migrants. Finally, our results confirm that trapping data from a site hardly used for stopover are well suited to represent the ongoing migration during the day and night.  相似文献   

16.
SPRING MIGRATION THROUGH SOUTHEAST MOROCCO   总被引:1,自引:1,他引:0  
K. D. Smith 《Ibis》1968,110(4):452-492
Very few quantitative data existed for the spring migration of birds across the Sahara desert. Observations covering 105 days in spring 1963–66 were made at Defilia, on the extreme northern fringe of the desert in southeast Morocco. The physical features and climate of the area are described, with brief reference to neighbouring desert zones. The birds recorded are listed in weekly or part-weekly totals, followed by subspecific and other comments on selected species.
The movements of migrants are summarized, together with the effects of adverse winds on migration; very bad weather along the northern desert fringe may contribute to the late arrival of some species in the British Isles (and presumably elsewhere in Europe) in spring by causing delays and heavy mortality. Most visible migration was northeastward or eastward, but substantial westward movements of hirundines took place.
Comparison is made with migration through other areas in Morocco and Algeria, both from existing literature and from previously unpublished data, which provide evidence of broad-front migration across the entire width of the Moroccan Sahara. Birds recorded in northwest Algeria in 1966 are listed, together with notes on physical features, climate and field observations. Many terns and waders were recorded at Daiat Tchiour, including some predominantly coastal species, which suggests that the latter were migrating on a great-circle track from winter quarters in West Africa across the Sahara to their breeding grounds in Siberia.
Recoveries of ringed birds are discussed; some of these, together with records of species well west of their normal migratory range, suggest that birds may be subject to lateral displacement by winds when crossing the Sahara, leading to considerable annual variation in species and numbers of birds recorded on the northern desert edge, even in the same place.  相似文献   

17.
Most long-distance passerine migrants in Sweden moult on breeding grounds before leaving on autumn migration to winter quarters. However, birds laying second or replacement clutches, or just breeding late, have too little time for a normal moult on the breeding grounds. When time is limited the birds may respond by making various adjustments to the moult, for example by moulting more quickly or by suspending the moult. In this study, the relationship between the performance of post-nuptial remex moult in Common Whitethroats breeding on Gotland, southeast Sweden, and autumn migration departure was investigated. The majority (77%) of the birds had interrupted moult in either the primaries or secondaries. Interruption of moult was more common among birds with a later onset date, as was asymmetry in moult between wings. The interruption of moult led to a significant time gain and moult completion was, consequently, more synchronized than moult onset. The results from this study indicate, in accordance with other data, that an early start of autumn migration is important. An early start may be crucial to facilitate the crossing of the Sahara Desert once the dry season has begun.  相似文献   

18.
SPRING MIGRATION OVER PUERTO RICO AND THE WESTERN ATLANTIC, A RADAR STUDY   总被引:1,自引:0,他引:1  
W. John  Richardson 《Ibis》1974,116(2):172-193
Migration over Puerto Rico was recorded by time-lapse filming of the display of a long-range surveillance radar on 40 days and 37 nights in the period 2 March-29 May 1971. Moderate density movements occurred every night; low density movements occurred on most days. Many birds, primarily passerines, took off from Puerto Rico each evening at 20–45 minutes after sunset.
Almost all birds flew to the west, NW or north. Birds were seen approaching from the direction of the Windward Islands and Venezuela, over Puerto Rico, and departing towards the Bahamas and eastern coast of the U.S. Uni- and multivariate analyses showed that the number of birds departing W-N each evening was positively correlated with following winds.
There is less night-to-night variation in the amount of migration at Puerto Rico than in eastern North America. However, this is apparently the result of less variable weather in the tropics, not the result of any lesser degree of meteorological selectivity by the migrants.
The tracks of the birds were correlated with wind direction. Birds moved WNW-NW with NE side winds but NW-NNW with SE following winds. The tracks were rarely exactly downwind. The variance amongst the directions of individual birds at any given time was usually small and not correlated with cloud cover or magnetic disturbances. The estimated headings of the birds varied from day to day in a pattern suggesting adjustment of headings to compensate at least partially for lateral wind drift.
In autumn many birds approach Puerto Rico from the north or even east of north; in spring few birds moved in the opposite directions. This difference in routes takes advantage of prevailing wind patterns.  相似文献   

19.
1.?An innate migration strategy guides birds through space and time. Environmental variation further modulates individual behaviour within a genetically determined frame. In particular, ecological barriers could influence departure direction and its timing. A shift in the migratory direction in response to an ecological barrier could reveal how birds adjust their individual trajectories to environmental cues and body condition. 2.?Northern wheatears of the Greenland/Iceland subspecies Oenanthe oenanthe leucorhoa arrive in Western Europe en route from their West African winter range. They then undergo an endogenously controlled shift in migratory direction from north to north-west to cross a large ecological barrier, the North Atlantic. We radiotracked these songbirds departing from Helgoland, a small island in the North Sea, over an unprecedented range of their journey. 3.?Here, we show that both birds' body condition and the wind conditions that they encountered influenced the departure direction significantly. Jointly high fuel loads and favourable wind conditions enabled migrants to cross large stretches of sea. Birds in good condition departed early in the night heading to the sea towards their breeding areas, while birds with low fuel loads and/or flying in poor weather conditions departed in directions leading towards nearby mainland areas during the entire night. These areas could be reached even after setting off late at night. 4.?Behavioural adjustment of migratory patterns is a critical adaptation for crossing ecological barriers. The observed variation in departure direction and time in relation to fuel load and wind revealed that these birds have an innate ability to respond by jointly incorporating internal information (body condition) and external information (wind support).  相似文献   

20.
Events in the life cycle of migrant birds are generally time‐constrained. Moult, together with breeding and migration, is the most energetically demanding annual cycle stages, but it is the only stage that can be scheduled at different times of the year. However, it is still not fully understood what factors determine this scheduling. We compare the timing of primary feather moult in relation to breeding and migration between two populations of Eurasian golden plover Pluvialis apricaria, the continental population breeding in Scandinavia and in N Russia that migrates to the Netherlands and southern Europe, and the Icelandic population that migrates mainly to Ireland and western UK. Moult was studied at the breeding grounds (N Sweden, N Russia, Iceland) and at stopover and wintering sites (S Sweden, the Netherlands). In both populations, primary moult overlapped with incubation and chick rearing, and females started on average 9 d later than males. Icelandic plovers overlapped moult with incubation to a larger extent and stayed in the breeding grounds until primary moult was completed. In contrast, continental birds only moulted the first 5–7 primaries at the breeding grounds and completed moult in stopover and wintering areas, such as S Sweden and the Netherlands. This overlap, although rare in birds, can be understood from an annual cycle perspective. Icelandic plovers presumably need to initiate moult early in the season to be able to complete it at the breeding grounds. The latter is not possible for continental plovers as their breeding season is much shorter due to a harsher climate. Additionally, for this population, moulting all the primaries at the stopover/wintering site is also not possible as too little time would remain to prepare for cold‐spell movements. We conclude that environmental conditions and migration strategy affect the annual scheduling of primary feather moult in the Eurasian golden plover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号