首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unimbibed Amaranthus caudatus seeds were found to contain stachyose, raffinose, verbascose, sucrose, galactinol, myo-inositol, glucose and fructose, while no galactose, maltose and maltotriose was detected. During imbibition, seed concentrations of verbascose, stachyose, raffinose, galactinol, myo-inositol (temporary) and fructose (transient) were observed to decrease; concentrations of galactose and maltose remained fairly constant, while those of sucrose, glucose and maltotriose increased, the increase in sucrose concentration was only temporary. Effects of gibberellin A3 (GA3) at 3 × 10−4 M and ethephon at 3 × 10−4 M alone or in the presence of methyl jasmonate (Me-JA) at 10−3 M on concentrations of soluble sugars during germination of A. caudatus seeds were examined. Me-JA was found to inhibit seed germination and fresh weight of the seeds, but did not affect sucrose, myo-inositol, galactose and maltose concentrations during imbibition for up to 20 h. The exogenously applied GA3 was observed to enhance germination, stachyose breakdown and glucose concentration after 20 h of incubation. Ethephon stimulated seed germination as well as utilisation of stachyose, galactinol (both after 14 and 20 h) and raffinose (after 14 h of incubation). Although the stimulatory effect of either GA3 or ethephon on seed germination was blocked by Me-JA; these stimulators increased mobilisation of raffinose and stachyose, but only ethephon enhanced both glucose and fructose after 14 and/or 20 h of incubation in the presence of Me-JA. The maltose concentration was increased by both GA3 and ethephon alone and in the presence of Me-JA. Of the growth regulators studied, ethephon alone and/or in combination with Me-JA significantly increased the concentrations of glucose, fructose, galactose, maltose and maltotriose. The differences in sugar metabolism appear to be linked to ethylene or GA3 applied simultaneously with Me-JA.  相似文献   

2.
Sucrose was present in seeds of 31 species at all ages and stages of their development. The raffinose family of oligosaccharides is present in most mature and dry seeds; tomato and tobacco seeds contain planteose, whereas sesame seeds contain this sugar and a higher member of the planteose series. Cotton seeds contain raffinose, stachyose, verbascose and an unidentified ketose. Free monosaccharides were not detected in any of the dry seeds; although free glucose and fructose were detected in some immature seeds, these sugars decreased in amount and eventually disappeared during seed maturation. Sucrose, stachyose, raffinose and verbascose accumulated, in developing soybeans, in that sequence. Maltose, a sugar rarely found in plant tissues, is present in immature soybean and honey locust seeds but does not occur in the other seeds examined. It increases to a maximum during development, subsequently decreases in amount during maturation and ripening and eventually disappears completely. The petioles of old leaves and stems of the soybean plant contain maltose, but the petioles of young soybean leaves, empty pods, leaf blades and roots do not.  相似文献   

3.
In white spruce ( Picea glauca [Moench.] Voss.) seeds, the raffinose family oligosaccharides (RFOs) provide carbon reserves for the early stages of germination prior to radicle protrusion. Some seedlots contain seeds that are dormant, failing to complete germination under optimal conditions. Since dormancy may be imposed through a metabolic block in reserve mobilization, the goal of this project was to identify any impediment to RFO mobilization in dormant relative to nondormant seeds. Desiccated seeds contain primarily, and in order of abundance on a molar basis, sucrose and the first 3 members of the RFOs, raffinose, stachyose and verbascose. Upon radicle protrusion at 25°C, the contents of RFOs decreased to low amounts in all seed parts, regardless of prior dormancy status and sucrose was metabolized to glucose and fructose, which increased in seed parts. During moist chilling at 4°C, RFO content initially decreased before stabilizing and then increasing. In seeds that did not complete germination, the synthesis of RFOs at 4°C favored verbascose, so that at the end of 14 (nondormant) or 35 (dormant) weeks, verbascose contents in megagametophytes exceeded the amount initially present in the desiccated seed. This was also true in the embryos of the dormant seedlot. In seed parts from both seedlots after months of moist chilling, stachyose amounts exceeded raffinose amounts. Upon radicle protrusion at 4°C, RFO contents decreased to amounts most similar to those present in seeds that completed germination at 25°C. Hence, the RFOs are utilized as a source of energy, regardless of the temperature at which white spruce seeds complete germination. Based on the similarity of sugar contents in seed parts between dormant and nondormant seeds that did not complete germination, differences in sugar metabolism are probably not the basis of dormancy in white spruce seeds.  相似文献   

4.
The timing of mobilisation of lipid, sucrose, raffinose and phytate in lettuce seeds (achenes) (cv. Grand Rapids) has been examined. These reserves (33%, 1.5%, 0.7%, 1.4% of achene dry weight, respectively) are stored mostly in the cotyledons. Except for a slight degradation of raffinose and increase in sucrose, there is no detectable reserve mobilisation during germination. The endosperm (8% of seed dry weight), which has thick, mannan-containing cell walls (carbohydrate, 3,4% of seed dry weight), is completely degraded within about 15h following germination. Mannanase activity increases about 100-fold during the same period and arises in all regions of the endosperm. Also during this period sucrose and raffinose are degraded and fructose and glucose accumulate in the embryo. The endosperm hydrolysis products are taken up by the embryo, and are probably used as an additional reserve to support early seedling growth. However, endosperm cell-wall carbohydrates, such as mannose, are not found as free sugars. Lipid and phytate are degraded in a later, second phase of mobilisation. Low levels of sucrose are present in the embryo, mostly in the cotyledons, and large amounts of fractose and glucose (14% of seedling dry weight at 3 days after sowing) accumulate in the hypocotyl and radicle. It is suggested that sucrose, produced in the cotyledons by gluco-neogenesis, is translocated to the axis and converted there to fructose and glucose.  相似文献   

5.
《Plant science》1987,51(1):21-28
With the onset of the degradation of galactomannan, the galactose and mannose levels increased in the endosperm. The hydrolysis of galactomannan was more or less complete within the first 3 days of germination. In the cotyledons, sucrose was the predominant free sugar during the period of rapid galactomannan hydrolysis and reducing sugars (glucose + fructose) were present in only 10–20% proportion. The level of soluble acid invertase activity was in the order of embryonic axis > endosperm > cotyledons. On the basis of (a) absence of galactose and mannose, (b) high proportion of sucrose, (c) very fast conversion of [14C]glucose and [14C]mannose to [14C]sucrose and (d) very low levels of both soluble and bound invertases in cotyledons, we conclude that there is an active synthesis of sucrose in this tissue where disaccharide seems to be least hydrolysed during the period of galactomannan mobilization. A rapid hydrolysis of galactomannan in endosperm during early germination resulted in the synthesis of some starch, as a temporary reserve, in cotyledons. When the cotyledons entered the phase of first leaf formation, cotyledonary sucrose was hydrolysed giving rise to invert sugars. In the embryonic axis, the increase in the ratio of reducing sugars to sucrose coupled with a higher level of invertase, compared with sucrose-UDP glucosyl transferase, indicated that free sugars from the cotyledons are translocated to the embryonic axis as sucrose.  相似文献   

6.
Import of sucrose and its transformation to galactomannan andraffinose-oligosaccharides have been studied in the developingguar seed. The amount of galactomannan gradually increased withthe ageing of the seed. During the entire period of pod development,sucrose constituted the major portion of the free sugars inthe seed (both endosperm and cotyledons) as well as in the podwall. Besides myo-inositol, the free sugars detected in thedeveloping endosperm and cotyledons were glucose, fructose,raffinose and stachyose. Some compounds, possibly glycosides(RG values higher than that of fructose), were also detectedin the endosperm. In the later stages of seed development, therelative proportion of raffinose in the free sugars increased,reaching 50% of the total free sugars in 77-d-old cotyledons.With pod maturity, the activities of soluble acid and boundacid invertases in the pod wall increased manifold with a concomitantdecline in the non-reducing sugar content. These enzymes seemto be involved in the mobilization of sucrose from this fruitingstructure into the seed. An increased synthesis of raffinose-oligosaccharidesboth in the endosperm and cotyledons was associated with highactivities of soluble acid invertase (pH 4.8) and sucrose-UDPglucosyl transferase in these tissues. Feeding uniformly labelled14C-sugars to the detached intact pods as well as to the isolatedendosperm and cotyledons resulted in labelling of all endogenousfree sugars and galactomannan. The uptake and incorporationinto galactomannan of 14C was stimulated by Co2+, Mn2+ and Mg2+.Except for mannose, a major proportion of the 14C from glucose,fructose and sucrose appeared in sucrose in both endosperm andcotyledons indicating a fast reconstitution of sucrose in situ.Based on the present results, a possible mode of transformationof sucrose to galactomannan and raffinose-oligosaccharides hasbeen proposed. Key words: Sucrose, galactomannan, raffinose-oligosaccharides, invertase, sucrose-UDP glucosyl transferase, 14C-incorporation, guar seed  相似文献   

7.
As osmolytes and signaling molecules, soluble sugars participate in the response and adaptation of plants to environmental stresses. In the present study, we measured the effect of chilling (12 °C) stress on the contents of eight soluble sugars in the leaves, cotyledons, stems, and roots of Jatropha curcas seedlings, as well as on the activities of eight rate-limiting enzymes that are critical to the metabolism of those soluble sugars. Chilling stress promoted both starch hydrolysis and soluble sugar accumulation. The soluble sugar contents of the leaves and cotyledons were affected more than that of the stems and roots. Meanwhile, the activities of the corresponding metabolic enzymes (e.g., β-amylase, uridine diphosphate glucose phosphorylase, and sucrose phosphate synthase) also increased in some organs. The gradual increase of soluble neutral alkaline invertase activity in the four studied organs suggested that sucrose catabolic production, such as glucose and fructose, was especially important in determining resistance to chilling stress and hexose signal transduction pathway. In addition, the substantial accumulation of raffinose family oligosaccharides and increase in corresponding metabolic enzyme activity suggested that galactinol and raffinose play an important role in determining the chilling resistance of J. curcas. Together, these findings establish a foundation for determining the relationship between the chilling resistance and soluble sugar accumulation of J. curcas and for investigating the mechanisms underlying sugar signaling transduction and stress responses.  相似文献   

8.
Contrary to general concepts of bacterial saccharide metabolism, melibiose (25 to 32 g/liter) and fructose (5 to 14 g/liter) accumulated as extracellular intermediates during the catabolism of raffinose (O-alpha-D-galactopyranosyl-1, 6-alpha-D-glucopyranosyl-beta-D-fructofuranoside) (90 g/liter) by ethanologenic recombinants of Escherichia coli B, Klebsiella oxytoca M5A1, and Erwinia chrysanthemi EC16. Both hydrolysis products (melibiose and fructose) were subsequently transported and further metabolized by all three organisms. Raffinose catabolism was initiated by beta-fructosidase; melibiose was subsequently hydrolyzed to galactose and glucose by alpha-galactosidase. Glucose and fructose were completely metabolized by all three organisms, but galactose accumulated in the fermentation broth with EC16(pLOI555) and P2. MM2 (a raffinose-positive E. coli mutant) was the most effective biocatalyst for ethanol production (38 g/liter) from raffinose. All organisms rapidly fermented sucrose (90 g/liter) to ethanol (48 g/liter) at more than 90% of the theoretical yield. During sucrose catabolism, both hydrolysis products (glucose and fructose) were metabolized concurrently by EC16(pLOI555) and P2 without sugar leakage. However, fructose accumulated extracellularly (27 to 28 g/liter) at early stages of fermentation with KO11 and MM2. Sequential utilization of glucose and fructose correlated with a diauxie in base utilization (pH maintenance). The mechanism of sugar escape remains unknown but may involve downhill leakage via permease which transports precursor saccharides or novel sugar export proteins. If sugar escape occurs in nature with wild organisms, it could facilitate the development of complex bacterial communities which are based on the sequence of saccharide catabolism and the hierarchy of sugar utilization.  相似文献   

9.
Summary The amounts of glucose, fructose, sucrose, arabinose/galactose, raffinose/stachyose and starch were investigated in the outer sapwood, innermost sapwood, transition zone and heartwood of four stems of Pinus sylvestris L. The samples were taken in October and the determination of the compounds was done enzymatically. It was not possible to distinguish arabinose from galactose and raffinose from stachyose. The amounts of glucose, fructose and sucrose were greatest in the outer sapwood and decreased gradually towards the innermost sapwood and the heartwood. In the outermost heartwood glucose, fructose and sucrose were only present in trace amounts. Raffinose/stachyose showed highest concentrations in the outer sapwood and decreased towards the heartwood. In contrast, the concentrations of arabinose/galactose increased towards the heartwood and the greatest amount was found in the inner heartwood. When identified by thin-layer chromatography (TLC), arabinose was found to be present in greater amounts than galactose. The amount of starch decreased markedly towards heartwood. However, the amounts of sugars in all the studied stems was very variable. The changes in the amounts of carbohydrates in the different zones of the stems and the possible relationships of these phenomena with heartwood formation are discussed.  相似文献   

10.
The total soluble carbohydrate fraction of the cotyledons and embryo axis of germinating soybean seedlings declined rapidly during the first 3 days of germination. This depletion began earlier in the embryo axis than in the cotyledon. The total carbohydrate content of the cotyledons of plants grown in light and plants grown in dark was approximately the same for the first 7 days of germination. Between day 9 and 13 the total carbohydrate content of the cotyledons of soybean seedlings grown in dark was higher than that of plants grown in light. The reducing sugar content of light-grown soybean cotyledons increased approximately 5-fold during the first 9 days of germination, whereas that of dark-grown soybean cotyledons increased more slowly during this interval. Reducing sugars in the embryo increased during the early stages of germination until they approximately equalled the total carbohydrate. Between day 4 and 13, oil was depleted more rapidly in the cotyledons of seedlings grown in light than those grown in the dark. The reserve carbohydrates of soybean embryos and cotyledons consisted primarily of low molecular weight oligosaccharides, particularly sucrose, stachyose, and raffinose. These compounds decreased rapidly during germination. The isocitritase activity in the cotyledons of germinating soybean seeds increased rapidly for the first 6 days of germination and then decreased for the next 7 days. The isocitritase activity of plants grown in the dark was higher than that of the plants grown in light at all stages of development, particularly between day 7 and 11.  相似文献   

11.
Characterization of sugar content and enzyme activity in germinating soybean (Glycine max L. Merrell) seeds led to the discovery of sorbitol accumulating in the axes during germination. The identity of sorbitol was confirmed by relative retention times on high-performance liquid chromatography and gas liquid chromatography and by mass spectra identical with authentic sorbitol. Accumulation of sorbitol in the axes started on day 1 of germination as sucrose decreased and glucose and fructose increased. Sucrose also decreased in the cotyledons, but there was no accumulation of sorbitol, glucose, or fructose. Accumulation of sorbitol and hexoses was highly correlated with increased invertase activity in the axes, but not with sucrose synthase and sucrose phosphate synthase activities. Sucrose synthase activity was relatively high in the axes, whereas the activity of sucrose phosphate synthase was relatively high in the cotyledons. Ketose reductase and aldose reductase were detected in germinating soybean axes, but not in cotyledons. Fructokinase and glucokinase were present in both axes and cotyledons. The data suggest a sorbitol pathway functioning in germinating soybean axes, which allows for the interconversion of glucose and fructose with sorbitol as an intermediate.  相似文献   

12.
During germination of winter vetch (Vicia villosa Roth.) seeds, the degradation of raffinose family oligosaccharides and galactosyl pinitols occurred faster in axis than in cotyledons. After 7 days of germination, all α-d-galactosides disappeared and the soluble carbohydrates in seedling tissues consisted of d-pinitol, sucrose, fructose, glucose and myo-inositol. Osmotic stress caused by incubation of seedlings in PEG 8000 solution (−0.5, −1.0, and −1.5 MPa) for 48 h induced the activity of crucial enzymes of the RFOs pathway, i.e. galactinol synthase and raffinose synthase, in both the root and epicotyl but not in cotyledons. The root and epicotyl accumulated elevated amounts of galactinol and raffinose as the osmotic potential was lowered. This process was transient because when PEG solution was replaced with water, galactinol and raffinose were degraded, thus confirming their direct involvement in the response of tissues to osmotic stress. Among other soluble carbohydrates, only sucrose accumulated in response to stress. The results did not show potential role of d-pinitol in the adjustment of winter vetch seedlings to osmotic stress.  相似文献   

13.
Parasitoid adults can directly feed on floral nectar and honeydew containing monosaccharides and disaccharides. Oligosaccharides such as maltose, melezitose and raffinose are also found in honeydew but are rare in floral nectar. The effects of six different sugar resources on the longevity, fecundity and nutrient reserves of Microplitis mediator, a larval endoparasitoid in the cotton bollworm Helicoverpa armigera (Hübner) were determined in our laboratory. The results showed that both food and sex affected longevity of this wasp. Females and males of M. mediator fed with 1 M sucrose solution survived longer than controls fed with water (5.7- and 3.7-fold longer, respectively). When provided with sucrose, glucose or fructose solutions, the parasitoid generated 3.6- to 3.7-fold more offspring than controls, and 60–75% of these progenies were produced during the first 5 days. When separately given fructose, sucrose or glucose, this wasp accumulated fructose and total sugar at the highest level, which means a high sugar levels might lead to prolonging longevity and more offspring in M. mediator. In addition, compared with organisms fed galactose or raffinose, M. mediator fed sucrose or fructose accumulated high glycogen levels. Furthermore, in M. mediator, the lipid content declined with the advancing age. Females showed the slowest lipid metabolic rates when fed with sucrose, glucose, fructose, mannose and galactose solutions versus when fed with raffinose and control. In addition, only sucrose had a significant effect on lipid levels in males nearing the end of life.  相似文献   

14.
Carrot (Daucus carota L.) cell suspension cultures grew well when provided with glucose, fructose, sucrose or raffinose. Galactose and melibiose supported less growth unless supplemented with glucose or fructose. In combination with ten different sugar mixtures, 2-deoxy-D-glucose (dGlc) inhibited culture growth. Inhibitory effects of dGlc were more marked with fructose, melibiose, raffinose or mixtures of these sugars in the culture medium. The presence of glucose or galactose reduced the inhibitory effects of dGlc on culture growth. Experiments with radioactive labelled sugars demonstrated that dGLc uptake was greater in the presence of fructose than glucose, and that growth inhibition of dGlc coincided with its uptake. Reduced protein content was also associated with the inhibitory effects of dGlc. Cultured cells contained lower levels of invertase (EC 3.2.1.26) activity during the active phase of culture growth (up to 25 days after subculture) than when growth had peaked and subsequently declined. Acid and alkaline invertase activities were not greatly reduced by exogenous hexoses. Invertase activity was greatest during periods of low protein content in all cultures and was inhibited by dGlc during the latter phases of the culture period. Free intracellular sugars throughout the culture period consisted mainly of glucose and fructose.  相似文献   

15.
Enzymatic control of the accumulation of verbascose in pea seeds   总被引:4,自引:0,他引:4  
Verbascose, the pentasaccharide of the raffinose family of oligosaccharides, consists of galactose units joined to sucrose. In pea (Pisum sativum) seeds, the content of verbascose is highly variable. In a previous study on a high‐verbascose pea cultivar, the present authors have demonstrated that verbascose is synthesized by a multifunctional stachyose synthase (EC 2.4.1.67), which utilizes raffinose as well as stachyose as a galactosyl acceptor. Herein the results of a study of the cloning and functional expression of stachyose synthase from the low‐verbascose genotype SD1 are reported and it is demonstrated that this line contains a protein with a reduced ability to synthesize verbascose. Analysis of seeds from seven pea lines revealed a positive correlation between verbascose synthase activity and verbascose content. Among these genotypes, only the SD1 line showed low verbascose synthase activity when the data were normalized to stachyose synthase activity. These results suggest that differences in the level of verbascose synthase activity could be caused by mutations in the stachyose synthase gene as well as by variation in the amount of the protein. The lines were also analysed for activity of α‐galactosidase, a catabolic enzyme that could limit the extent of verbascose accumulation. No relationship was found between α‐galactosidase activity and the amount of raffinose family oligosaccharides.  相似文献   

16.
Nonstructural carbohydrates in dormant and afterripened wild oat caryopses   总被引:1,自引:0,他引:1  
Nonstructural carbohydrates were determined in both embryo and endosperm of dormant (nongerminating) and afterripened (germinating) intact caryopses of wild oat ( Avena fatua L.). No changes in endosperm starch or soluble sugar were observed at the onset of germination (18 h). No changes in glucose, fructose, sucrose or starch within dormant or afterripened embryos correlated with onset of visual germination. In afterripened embryos, depletion of raffinose (18 h), stachyose (18 h) and galactose (24 h) was correlated with germination. In contrast, raffinose-family oligosaccharide levels in dormant embryos remained constant for 7 days following imbibition. Germination of isolated dormant embryos on 88 m M galactose-containing media was accompanied by decreased endogenous levels of raffinose and stachyose. Isolated embryos from dormant caryopses incorporated 14C from 14C-fructose into both raffinose and stachyose during 24 h of imbibition. In contrast, no 14C incorporation into stachyose was observed in embryos from afterripened caryopses. No 14C incorporation into raffinose was observed at 18 and 24 h. When in vitro activities of α galactosidase were measured, no temporal differences between dormant or afterripened caryopses were detected in either embryo or endosperm tissue. Although the mechanism associated with differences in utilization of raffinose and stachyose is yet unidentified, alterations in raffinose-family oligosaccharide metabolism in the embryo appear to be a unique prerequisite for afterripening-induced germination.  相似文献   

17.
Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.  相似文献   

18.
Extracellular invertase of Rhizobium japonicum and its role in free sugar metabolism in the developing root nodules of Sesbania grandiflora L. was studied. The enzyme hydrolysed sucrose extracellularly, and its release was substrate inducible. 0.1 Mβ-mercaptoethanol released the cell-bound form of this enzyme. The production of invertase was low when glucose, galactose, mannose, fructose and raffinose were used as carbon sources in the growth medium. In the developing nodules sucrose was the major sugar. The content of fructose was low in comparison with that of glucose – suggesting that in the nodules, fructose is converted to glucose prior to its entry into the bacterial cell. The content of glucose synchronised with the pattern of change in the activity of invertase in the nodules.  相似文献   

19.
Loss of dehydration tolerance coincides with a shift from heterotrophy to autotrophy during post-germination growth of spring wheat seedlings. This critical stage falls on the fifth day following imbibition. Till the sixth day of experiment light had no effect on dry weight of the seedlings but the survival of six day old seedlings was reduced by half upon dehydration. Germinating seeds in the presence of 5 mM glucose, fructose, mannose or sucrose did not promote seedling growth but either increase (glucose, fructose) or decreased (mannose, sucrose) the survival of dehydrated seedlings. Protection against dehydration by the former sugars was correlated, irrespective of the seedling age, with the decrease of sugar pool in seeds and increase in shoots (coleoptile and first leaf) and roots. The opposite changes were provoked by the sugars hampering seedling survival. Generally, survival of wheat seedlings was not correlated with the size of soluble sugar pool but its distribution and composition. Lower mobilisation of soluble sugars in seed, lower proportion of reduced sugars to sucrose and higher share of raffinose is characteristic for the tolerant four day old seedlings and those grown in the media containing glucose or fructose. The results presented indicate that higher proportion of reduced sugars to sucrose and lower share of raffinose in six day old seedlings seems to be associated with the loss of dehydration tolerance of these seedlings, despite heterotrophic character of growth.  相似文献   

20.
To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl‐ACP carrier protein thioesterase and (3R)‐hydroxyacyl‐ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:686–694, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号