首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shyu KG  Tsai SC  Wang BW  Liu YC  Lee CC 《Life sciences》2004,76(7):813-826
Saikosaponin C is one of the saikosaponins that are consisted in a Chinese herb, Radix Bupleuri. Recently, saikosaponins have been reported to have properties of cell growth inhibition, inducing cancer cells differentiation and apoptosis. However, saikosaponin C had no correlation with cell growth inhibition. In this study, we investigated the role of saikosaponin C on the growth of endothelial cells and angiogenesis. We found that saikosaponin C yielded a potent effect on inducing human umbilical vein endothelial cells (HUVECs) viability and growth. In addition to inducing endothelial cells growth, saikosaponin C also induced endothelial cells migration and capillary tube formation. The gene expression or activation of matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor (VEGF) and the p42/p44 mitogen-activated protein kinase (MAPK, ERK) that correlated with endothelial cells growth, migration and angiogenesis were also induced by saikosaponin C. From these results, we suggest that saikosaponin C may have the potential for therapeutic angiogenesis but is not suitable for cancer therapy.  相似文献   

2.
Matrix metalloproteinases (MMPs) play a vital role in vasculature response to hemodynamic stimuli via the degradation of extracellular matrix substrates. In this study, we investigated the putative role of cyclic strain-induced endothelial MMP-2 (and MMP-9) expression and release in modulating bovine aortic smooth muscle cell (BASMC) migration in vitro. Equibiaxial cyclic strain of bovine aortic endothelial cells (BAECs) leads to elevation in cellular MMP-2 (and MMP-9) expression, activity, and secretion into conditioned media, events which were time- and force-dependent. Subsequent incubation of BASMCs with conditioned media from chronically strained BAECs (5%, 24 h) significantly reduces BASMC migration (38+/-6%), an inhibitory effect which could be completely reversed by targeted siRNA 'knock-down' of MMP-2 (but not MMP-9) expression and activity in BAECs. Moreover, inhibition of strain-mediated MMP-2 expression in BAECs by protein tyrosine kinase (PTK) blockade with genistein (50 microM) was also found to completely reverse this inhibitory effect on BASMC migration. Finally, direct supplementation of recombinant MMP-2 into the BASMC migration assay was found to have no significant effect on migration. However, the effect on BASMC migration of MMP-2 siRNA transfection in BAECs could be reversed by supplementation of recombinant MMP-2 into BAEC media prior to (and for the duration of) strain. These findings reveal a potentially novel role for strain-induced endothelial MMP-2 in regulating vascular SMC migration.  相似文献   

3.
PPAR activators inhibit endothelial cell migration by targeting Akt   总被引:12,自引:0,他引:12  
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose metabolism and exert several vascular effects that may provide a dual benefit of these receptors on metabolic disorders and atherosclerotic vascular disease. Endothelial cell migration is a key event in the pathogenesis of atherosclerosis. We therefore investigated the effects of lipid-lowering PPARalpha-activators (fenofibrate, WY14643) and antidiabetic PPARgamma-activators (troglitazone, ciglitazone) on this endothelial cell function. Both PPARalpha- and PPARgamma-activators significantly inhibited VEGF-induced migration of human umbilical vein endothelial cells (EC) in a concentration-dependent manner. Chemotactic signaling in EC is known to require activation of two signaling pathways: the phosphatidylinositol-3-kinase (PI3K)-->Akt- and the ERK1/2 mitogen-activated protein kinase (ERK MAPK) pathway. Using the pharmacological PI3K-inhibitor wortmannin and the ERK MAPK-pathway inhibitor PD98059, we observed a complete inhibition of VEGF-induced EC migration. VEGF-induced Akt phosphorylation was significantly inhibited by both PPARalpha- and gamma-activators. In contrast, VEGF-stimulated ERK MAPK-activation was not affected by any of the PPAR-activators, indicating that they inhibit migration either downstream of ERK MAPK or independent from this pathway. These results provide first evidence for the antimigratory effects of PPAR-activators in EC. By inhibiting EC migration PPAR-activators may protect the vasculature from pathological alterations associated with metabolic disorders.  相似文献   

4.
The study was designed to investigate the effect of retinol binding protein (RBP)-4 on the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, which mediate the effects of insulin in vascular endothelial cells. The effects of RBP4 on nitric oxide (NO) and insulin-stimulated endothelin-1 (ET-1) secretion and on phosphorylation (p) of Akt, endothelial NO synthetase (eNOS), and extracellular signal-regulated kinase (ERK)1/2 were investigated in bovine vascular aortic endothelial cells (BAECs). RBP4 showed an acute vasodilatatory effect on aortic rings of rats within a few minutes. In BAECs, RBP4-treatment for 5 min significantly increased NO production, but inhibited insulin-stimulated ET-1 secretion. RBP4-induced NO production was not inhibited by tetraacetoxymethylester (BAPTA-AM), an intracellular calcium chelator, but was completely abolished by wortmannin, a PI3K inhibitor. RBP4 significantly increased p-Akt and p-eNOS production, and significantly inhibited p-ERK1/2 production. Triciribine, an Akt inhibitor, and wortmannin significantly inhibited RBP4-induced p-Akt and p-eNOS production. Inhibition of Akt1 by small interfering RNA decreased p-eNOS production enhanced by RBP4 in human umbilical vein endothelial cells. In conclusion, RBP4 has a robust acute effect of enhancement of NO production via stimulation of part of the PI3K/Akt/eNOS pathway and inhibition of ERK1/2 phosphorylation and insulin-induced ET-1 secretion, probably in the MAPK pathway, which results in vasodilatation.  相似文献   

5.
《Translational oncology》2020,13(11):100833
Head and neck cancer (HNC) is characterized with multiple aberrations in cell cycle pathways, including amplification of cyclin D1. Palbociclib (PAL), a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to regulate cell cycle progression in HNC. However, recent studies have revealed the acquired resistance of certain cells to PAL through activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Therefore, we investigated whether the inhibition of MEK/ERK pathway by trametinib (TRA) may overcome the limited efficacy of PAL in HNC. We evaluated the effect of PAL alone and in combination with TRA on the viability of HNC cells, and found that the combination treatment synergistically inhibited the proliferation of HNC cells. The combination treatment induced G0/G1 cell cycle arrest and apoptotic cell death. In particular, apoptosis mediated by the combination treatment was accompanied with an increase in caspase-3 activity and the number of TUNEL-positive apoptotic cells. These results were consistent with the decrease in cell cycle progression and mitogen-activated protein kinase (MAPK) pathway activation. In a xenograft mouse model of HNC, PAL and TRA synergistically inhibited tumor growth and enhanced tumor cell apoptosis, consistent with the increase in the number of TUNEL-positive cells. The anti-proliferative effects were evident in tumor tissues subjected to the combination treatment as compared with those treated with single drug. Taken together, our study demonstrates that the combination of PAL and TRA exerts synergistic anticancer effects and inhibits cell cycle check points and MEK/ERK pathway in HNC, suggestive of their potential application for HNC treatment.  相似文献   

6.
In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.  相似文献   

7.
Angiogenesis, the formation of new blood vessels from preexisting capillaries, is essential for tumor progression and metastasis. During tumor neovascularization, vascular endothelial growth factor and ephrin (Eph) families emerge as critical mediators of angiogenesis. The green tea catechin epigallocatechin gallate (EGCG), a tyrosine kinase inhibitor, has been demonstrated in previous studies to be an effective antiangiogenesis agent. However, the inhibitory effect of green tea catechins on ephrin-A1-mediated tumor angiogenesis has not been demonstrated yet. Thus, in this study, we investigated the molecular mechanism of ephrin-A1-mediated cell migration and angiogenesis, as well as the inhibitory effects of EGCG. Here we show that ephrin-A1 mediates endothelial cell migration and regulates vascular remodeling in tumor neovascularization in vitro. We also demonstrated that ephrin-A1-mediated cell migration required the activation of extracellular-regulated kinase (ERK-1/2) but not of phosphatidylinositol-3-kinase. The green tea catechin EGCG inhibited ephrin-A1-mediated endothelial cell migration, as well as tumor angiogenesis, in a dose-dependent manner. Furthermore, EGCG inhibited the ephrin-A1-mediated phosphorylation of EphA2 and ERK-1/2. Taken together, these data indicated that activation of ERK-1/2 plays an essential role in ephrin-A1-mediated cell migration. EGCG inhibited ephrin-A1-mediated endothelial migration and angiogenesis. It suggests a novel antiangiogenesis application of EGCG in cancer chemoprevention.  相似文献   

8.
研究银杏叶提取物(extract of ginkgo biloba,EGB)对牛主动脉内皮细胞(bovine aortic endothelial cells,BAECs)增殖的影响及其机制。分离培养BAECs,给予EGB刺激,采用噻唑蓝比色法检测细胞增殖改变,用流式细胞仪检测对细胞增殖周期的影响,同时用Western印迹检测细胞内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)表达的变化。结果EGB刺激显著促进BAECs的增殖并呈剂量依赖效应,而一氧化氮合酶抑制剂可显著抑制上述效应。EGB刺激显著促进牛主动脉内皮细胞eNOS的表达,并呈剂量依赖效应。EGB显著促进BAECs增殖,其作用由EGB上调的NO介导。  相似文献   

9.
10.
Endostatin induces acute endothelial nitric oxide and prostacyclin release   总被引:3,自引:0,他引:3  
Chronic exposure to endostatin (ES) blocks endothelial cell (EC) proliferation, and migration and induces EC apoptosis thereby inhibiting angiogenesis. Nitric oxide (NO) and prostacyclin (PGI(2)), in contrast, play important roles in promoting angiogenesis. In this study, we examined the acute effects of ES on endothelial NO and PGI(2) production. Unexpectedly, a cGMP reporter cell assay showed that ES-induced acute endothelial NO release in cultured bovine aortic endothelial cells (BAECs). Enzyme immunoassay showed that ES also induced an acute increase in PGI(2) production in BAECs. These results were confirmed by ex vivo vascular ring studies that showed vascular relaxation in response to ES. Immunoblot analysis showed that ES stimulated acute phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser116, Ser617, Ser635, and Ser1179, and dephosphorylation at Thr497 in BAECs, events associated with eNOS activation. Short-term exposure of EC to ES, therefore, unlike long-term exposure which is anti-angiogenic, may be pro-angiogenic.  相似文献   

11.
Role of autophagy in angiogenesis in aortic endothelial cells   总被引:1,自引:0,他引:1  
Angiogenesis plays critical roles in the recovery phase of ischemic heart disease and peripheral vascular disease. An increase in autophagy is protective under hypoxic and chronic ischemic conditions. In the present study we determined the role of autophagy in angiogenesis. 3-Methyladenine (3-MA) and small interfering RNA (siRNA) against ATG5 were used to inhibit autophagy induced by nutrient deprivation of cultured bovine aortic endothelial cells (BAECs). Assays of BAECs tube formation and cell migration revealed that inhibition of autophagy by 3-MA or siRNA against ATG5 reduced angiogenesis. In contrast, induction of autophagy by overexpression of ATG5 increased BAECs tube formation and migration. Additionally, inhibiting autophagy impaired vascular endothelial growth factor (VEGF)-induced angiogenesis. However, inhibition of autophagy did not alter the expression of pro-angiogenesis factors such as VEGF, platelet-derived growth factor, or integrin αV. Furthermore, autophagy increased reactive oxygen species (ROS) formation and activated AKT phosphorylation. Inhibition of autophagy significantly decreased the production of ROS and activation of AKT but not of extracellular regulated kinase, whereas overexpression of ATG5 increased cellular ROS production and AKT activation in BAECs. Inhibition of AKT activation or ROS production significantly decreased the tube formation induced by ATG5 overexpression. Here we report a novel observation that autophagy plays an important role in angiogenesis in BAECs. Induction of autophagy promotes angiogenesis while inhibition of autophagy suppresses angiogenesis, including VEGF-induced angiogenesis. ROS production and AKT activation might be important mechanisms for mediating angiogenesis induced by autophagy. Our findings indicate that targeting autophagy may provide an important new tool for treating cardiovascular disease.  相似文献   

12.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

13.
Most proangiogenic factors exert their biological effects primarily by activating extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)/Akt signaling pathways. These pathways appear to play a critical role in endothelial cell migration, because selective inhibition of either ERK or PI3-K/Akt signaling almost completely prevented endothelial cell migration. Recently, we demonstrated that a truncated kringle domain of human apolipoprotein(a), termed rhLK68, inhibits endothelial cell migration in vitro. However, its mechanism of action was not well defined. In this study, we determined the effects of rhLK68 on ERK1/2 and PI3-K/Akt signaling pathways to explore the molecular mechanism of rhLK68-mediated inhibition of endothelial cell migration. Treatment with rhLK68 inhibited ERK1/2 phosphorylation but did not influence Akt activation. Interestingly, an inhibitor of protein-tyrosine phosphatase, sodium orthovanadate, dose-dependently reversed both rhLK68-induced dephosphorylation of ERK1/2 and decreased migration of endothelial cells, whereas rhLK68 showed no significant effects on MEKs phosphorylation. In conclusion, these results indicate that inhibition of endothelial cell migration by rhLK68 may be achieved by interfering with ERK1/2 activation via a protein-tyrosine phosphatase-dependent pathway.  相似文献   

14.
LJ Zhang  BB Tao  MJ Wang  HM Jin  YC Zhu 《PloS one》2012,7(9):e44590
Hydrogen sulfide (H(2)S) is now considered as the third gaseotransmitter, however, the signaling pathways that modulate the biomedical effect of H(2)S on endothelial cells are poorly defined. In the present study, we found in human endothelial cells that H(2)S increased cell migration rates and induced a marked reorganization of the actin cytoskeleton, which was prevented by depletion of Rac1. Pharmacologic inhibiting vascular endothelial growth factor receptor (VEGFR) and phosphoinositide 3-kinase (PI3K) both blunted the activation of Rac1 and the promotion of cell migration induced by H(2)S. Moreover, H(2)S-induced Rac1 activation was selectively dependent on the presence of the PI3K p110α isoform. Activated Rac1 by H(2)S thus in turn resulted in the phosphorylation of the F-actin polymerization modulator, cofilin. Additionally, inhibiting of extracellular signal-regulated kinase (ERK) decreased the augmented cell migration rate by H(2)S, but had no effect on Rac1 activation. These results indicate that Rac1 conveys the H(2)S signal to microfilaments inducing rearrangements of actin cytoskeleton that regulates cell migration. VEGFR-PI3K was found to be upstream pathway of Rac1, while cofilin acted as a downstream effector of Rac1. ERK was also shown to be involved in the action of H(2)S on endothelial cell migration, but independently of Rac1.  相似文献   

15.
Abl is a nonreceptor tyrosine kinase that has a role in regulating migration and adhesion of nonmuscle cells as well as smooth muscle contraction. The role of Abl in smooth muscle cell proliferation has not been investigated. In this study, treatment with endothelin-1 (ET-1) and platelet-derived growth factor (PDGF) increased Abl phosphorylation at Tyr(412) (an indication of Abl activation) in vascular smooth muscle cells. To assess the role of Abl in smooth muscle cell proliferation, we generated stable Abl knockdown cells by using lentivirus-mediated RNA interference. ET-1- and PDGF-induced cell proliferation was attenuated in Abl knockdown cells compared with cells expressing control shRNA and uninfected cells. Abl silencing also arrested cell cycle progression from G(0)/G(1) to S phase. Furthermore, activation of smooth muscle cells with ET-1 and PDGF induced phosphorylation of ERK1/2 and Akt. Abl knockdown attenuated ERK1/2 phosphorylation in smooth muscle cells stimulated with ET-1 and PDGF. However, Akt phosphorylation upon stimulation with ET-1 and PDGF was not reduced. Because Abl is known to regulate actin polymerization in smooth muscle, we also evaluated the effects of inhibition of actin polymerization on phosphorylation of ERK1/2. Pretreatment with the actin polymerization inhibitor latrunculin-A also blocked ERK1/2 phosphorylation during activation with ET-1 and PDGF. The results suggest that Abl may regulate smooth muscle cell proliferation by modulating actin dynamics and ERK1/2 phosphorylation during mitogenic activation.  相似文献   

16.
We have observed that the vasoactive peptide endothelin-1 is a potent inducer of migration of primary human brain-derived microvascular endothelial cells. By blocking signal transduction pathways with specific inhibitors, and using dominant negative mutant infections, we have demonstrated that multiple pathways are involved in endothelin-1-induced migration. Absolutely required for migration are protein tyrosine kinase Src, Ras, protein kinase C (PKC), phosphatidylinositol 3-kinase, ERK, and JNK; partial requirements were exhibited by cAMP-activated protein kinase and p38 kinase. Partial elucidation of the signal transduction sequences showed that the MAPKs ERK, JNK, and p38 are positioned downstream of both PKC and cAMP-activated protein kinase in the signal transduction scheme. The results show that human brain endothelial cell migration has distinct characteristics, different from cells derived from other vascular beds, or from other species, often used as model systems. Furthermore, the results indicate that endothelin-1, secreted by many tumors, is an important contributor to tumor-produced proangiogenic microenvironment. This growth factor has been associated with increased microvessel density in tumors and is responsible for endothelial cell proliferation, migration, invasion, and tubule formation. Because many signal transduction pathways investigated in this study are potential or current targets for anti-angiogenesis therapy, these results are of critical importance for designing physiological antiangiogenic protocols. signal transduction; angiogenesis; microvessels; vasoactive peptides  相似文献   

17.
Granulocyte-colony stimulating factor (G-CSF) has been shown to play a neuroprotective role in ischemic stroke by mobilizing bone marrow (BM)-derived endothelial progenitor cells (EPCs), promoting angiogenesis, and inhibiting apoptosis. Impairments in mobilization and function of the BM-derived EPCs have previously been reported in animal and human studies of diabetes where there is both reduction in the levels of the BM-derived EPCs and its ability to promote angiogenesis. This is hypothesized to account for the pathogenesis of diabetic vascular complications such as stroke. Here, we sought to investigate the effects of G-CSF on diabetes-associated cerebral vascular defect. We observed that pretreatment of the cultured human brain vascular endothelial cells (HBVECs) with G-CSF largely prevented cell death induced by the combination stimulus with high glucose, free fatty acids (FFA) and hypoxia by increasing cell viability, decreasing apoptosis and caspase-3 activity. Cell ultrastructure measured by transmission electron microscope (TEM) revealed that G-CSF treatment nicely reduced combination stimulus-induced cell apoptosis. The results from fluorescent probe Fluo-3/AM showed that G-CSF greatly suppressed the levels of intracellular calcium ions under combination stimulus. We also found that G-CSF enhanced the expression of cell cycle proteins such as human cell division cycle protein 14A (hCdc14A), cyclinB and cyclinE, inhibited p53 activity, and facilitated cell cycle progression following combination stimulus. In addition, activation of extracellular signal-regulated kinase1/2 (ERK1/2) and Akt, and deactivation of c-Jun N terminal kinase (JNK) and p38 were proved to be required for the pro-survival effects of G-CSF on HBVECs exposed to combination stimulus. Overall, G-CSF is capable of alleviating HBVECs injury triggered by the combination administration with high glucose, FFA and hypoxia involving the mitogen-activated protein kinases (MAPK) and Akt signaling cascades. G-CSF may represent a promising therapeutic agent for diabetic stroke.  相似文献   

18.
Tubulogenesis by epithelial cells regulates kidney, lung, and mammary development, whereas that by endothelial cells regulates vascular development. Although functionally dissimilar, the processes necessary for tubulation by epithelial and endothelial cells are very similar. We performed microarray analysis to further our understanding of tubulogenesis and observed a robust induction of regulator of G protein signaling 4 (RGS4) mRNA expression solely in tubulating cells, thereby implicating RGS4 as a potential regulator of tubulogenesis. Accordingly, RGS4 overexpression delayed and altered lung epithelial cell tubulation by selectively inhibiting G protein-mediated p38 MAPK activation, and, consequently, by reducing epithelial cell proliferation, migration, and expression of vascular endothelial growth factor (VEGF). The tubulogenic defects imparted by RGS4 in epithelial cells, including its reduction in VEGF expression, were rescued by overexpression of constitutively active MKK6, an activator of p38 MAPK. Similarly, RGS4 overexpression abrogated endothelial cell angiogenic sprouting by inhibiting their synthesis of DNA and invasion through synthetic basement membranes. We further show that RGS4 expression antagonized VEGF stimulation of DNA synthesis and extracellular signal-regulated kinase (ERK)1/ERK2 and p38 MAPK activation as well as ERK1/ERK2 activation stimulated by endothelin-1 and angiotensin II. RGS4 had no effect on the phosphorylation of Smad1 and Smad2 by bone morphogenic protein-7 and transforming growth factor-beta, respectively, indicating that RGS4 selectively inhibits G protein and VEGF signaling in endothelial cells. Finally, we found that RGS4 reduced endothelial cell response to VEGF by decreasing VEGF receptor-2 (KDR) expression. We therefore propose RGS4 as a novel antagonist of epithelial and endothelial cell tubulogenesis that selectively antagonizes intracellular signaling by G proteins and VEGF, thereby inhibiting cell proliferation, migration, and invasion, and VEGF and KDR expression.  相似文献   

19.
Investigations carried out over the past 3 years have implicated a key role for sphingosine 1-phosphate (SPP) in angiogenesis and blood vessel maturation. SPP is capable of inducing almost every aspect of angiogenesis and vessel maturation in vitro, including endothelial cell chemotaxis, survival, proliferation, capillary morphogenesis and adherence antigen deployment, as well as stabilizing developing endothelial cell monolayers and recruitment of smooth muscle cells to maturing vessels. Acting in conjunction with protein angiogenic factors, SPP induces prolific vascular development in many established models of angiogenesis in vivo. Thus, SPP is a unique, potent and multifaceted angiogenic agent. While SPP induces angiogenic effects by ligating members of the endothelial differentiation gene (EDG) G-protein-coupled family of receptors, recent studies suggest that endogenously produced SPP may also account for the ability of tyrosine kinase receptors to induce cell migration. Thus, SPP provides a clear link between tyrosine kinase and G-protein-coupled receptor agonists involved in the angiogenic response. However, the mechanisms by which SPP exerts its effects on vascular cells remain unclear, conflicting and controversial. Precise definition of the signalling pathways by which SPP induces specific aspects of the angiogenic response promises to lead to new and effective therapeutic approaches to regulate angiogenesis at sites of tissue damage, neoplastic transformation and inflammation. This review will trace the discovery of SPP as a novel angiogenic factor as it outlines present information on the signalling pathways by which SPP induces its effects on cells of the developing vascular bed.  相似文献   

20.
Signaling and regulation of endothelial cell survival by angiopoietin-2   总被引:1,自引:0,他引:1  
Angiopoietins are ligands for endothelial cell-specific Tie-2 receptors. Whereas angiopoietin-1 (Ang-1) activates these receptors and promotes cell survival, migration, and sprouting, little information is available regarding how Ang-2 influences these cells. In this study, we evaluated signaling pathways and biological effects of physiological concentrations of Ang-2 in cultured human umbilical vein endothelial cells. Ang-2 at 150 and 300 ng/ml elicited a transient (reaching peak values within 15 min of exposure) increase in the phosphorylation of Tie-2 receptors, protein kinase B (Akt), ERK1/2, and p38 members of the mitogen-activated protein kinases. However, unlike Ang-1, Ang-2 significantly inhibited JNK/SAPK phosphorylation. When vascular endothelial growth factor (VEGF) was present along with Ang-2, ERK1/2 phosphorylation was inhibited, whereas augmentation of Ang-1-induced ERK1/2 phosphorylation was triggered by VEGF. Ang-2 treatment had no effect on cell migration and in vitro wound healing but significantly attenuated serum deprivation-induced apoptosis and promoted survival. These effects were completely reversed by phosphatidylinositol 3 (PI3)-kinase and ERK1/2 inhibitors but were augmented by an inhibitor of the p38 pathway. These results suggest that Ang-2 promotes endothelial cell survival through the ERK1/2 and PI3-kinase pathways and that this angiopoietin is not a strong promoter of endothelial cell migration. We also conclude that the nature of interactions in terms of ERK1/2 activation between Ang-2 and VEGF is different from that of Ang-1 and VEGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号