首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Folding abnormalities of the triple helix have been demonstrated in collagen diseases such as osteogenesis imperfecta in which the mutation leads to the substitution of a single Gly in the (Gly-X-Y)n sequence pattern by a larger residue. Model peptides can be used to clarify the details of normal collagen folding and the consequences of the interruption of that folding by a Gly substitution. NMR and CD studies show that placement of a (GPO)4 nucleation domain at the N terminus rather than the C terminus of a native collagen sequence allows the formation of a stable triple helix but alters the folding mechanism. Although C- to N-terminal directional folding occurs when the nucleation domain is at the C terminus, there is no preferential folding direction when the nucleation domain is at the N terminus. The lack of zipper-like directional folding does not interfere with triple-helix formation, and when a Gly residue is replaced by Ser to model an osteogenesis imperfecta mutation, the peptide with the N-terminal (GPO)4 domain can still form a good triple helix N-terminal to the mutation site. These peptide studies raise the possibility that mutant collagen could fold in a C to N direction in a zipper-like manner up to the mutation site and that completion of the triple helix N-terminal to the mutation would involve an alternative mechanism.  相似文献   

2.
Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as well as the local sequence environment, was varied. NMR measurement of translational diffusion coefficients allowed the identification of partially folded species. When Gly was replaced by Ala, the Ala residue was incorporated into a fully folded triple helix, whereas replacement of Gly by Ser or Arg resulted in the presence of some partially folded species, suggesting a folding barrier. Increasing the triple-helix stability of the sequence N-terminal to a Gly-to-Ser replacement allowed complete triple-helix folding, whereas with the substitution of Arg, with its large side chain, the peptide achieved full folding only after flexible residues were introduced N-terminal to the mutation site. These studies shed light on the factors important for accommodation of Gly mutations within the triple helix and may relate to the varying severity of OI.  相似文献   

3.
Misfolding of the triple helix has been shown to play a critical role in collagen diseases. The substitution of a single Gly by another amino acid breaks the characteristic repeating (Gly-X-Y)n sequence pattern and results in connective tissue disease such as osteogenesis imperfecta. Nuclear magnetic resonance (NMR) studies of normal and mutated collagen triple-helical peptides offer an opportunity to characterize folding and conformational alterations at the substitution site, as well as at positions upstream and downstream of a Gly mutation. The NMR studies suggest that the local sequences surrounding the substitution site, and the renucleation sequences N-terminal to and adjacent to the substitution site, may be critical in defining the clinical phenotype of osteogenesis imperfecta. These studies may pave the way to understanding the mechanism by which a single Gly substitution in collagen can lead to pathological conditions.  相似文献   

4.
Bodian DL  Madhan B  Brodsky B  Klein TE 《Biochemistry》2008,47(19):5424-5432
Osteogenesis imperfecta (OI), or brittle bone disease, often results from missense mutation of one of the conserved glycine residues present in the repeating Gly-X-Y sequence characterizing the triple-helical region of type I collagen. A composite model was developed for predicting the clinical lethality resulting from glycine mutations in the alpha1 chain of type I collagen. The lethality of mutations in which bulky amino acids are substituted for glycine is predicted by their position relative to the N-terminal end of the triple helix. The effect of a Gly --> Ser mutation is modeled by the relative thermostability of the Gly-X-Y triplet on the carboxy side of the triplet containing the substitution. This model also predicts the lethality of Gly --> Ser and Gly --> Cys mutations in the alpha2 chain of type I collagen. The model was validated with an independent test set of six novel Gly --> Ser mutations. The hypothesis derived from the model of an asymmetric interaction between a Gly --> Ser mutation and its neighboring residues was tested experimentally using collagen-like peptides. Consistent with the prediction, a significant decrease in stability, calorimetric enthalpy, and folding time was observed for a peptide with a low-stability triplet C-terminal to the mutation compared to a similar peptide with the low-stability triplet on the N-terminal side. The computational and experimental results together relate the position-specific effects of Gly --> Ser mutations to the local structural stability of collagen and lend insight into the etiology of OI.  相似文献   

5.
The standard collagen triple helix requires Gly as every third residue in the amino acid sequence, yet all nonfibrillar collagens contain sites where this repeating pattern is interrupted. To explore the effects of such natural interruptions on the triple helix, a 4- or 15-residue sequence from human basement membrane type IV collagen was introduced between (Gly-Xaa-Yaa)(n) domains within a recombinant bacterial collagen. The interruptions had little effect on melting temperature, consistent with the high thermal stability reported for nonfibrillar collagens. Although the 4-residue interruption cannot be accommodated within a standard triple helix, trypsin and thermolysin resistance indicated a tightly packed structure. Central residues of the 15-residue interruption were protease-susceptible, whereas residues near the (Gly-Xaa-Yaa)(n) boundary were resistant, supporting a transition from an alternate conformation to a well packed triple helix. Both interruptions led to a delay in triple-helix folding, with the 15-residue interruption causing slower folding than the 4-residue interruption. These results suggest that propagation through interruptions represents a slow folding step. To clarify the relation between natural interruptions and pathological mutations, a Gly to Ser missense mutation was placed three triplets away from the 4-residue interruption. As a result of this mutation, the 4-residue interruption and nearby triple helix became susceptible to protease digestion, and an additional folding delay was observed. Because Gly missense mutations that cause disease are often located near natural interruptions, structural and folding perturbations arising from such proximity could be a factor in collagen genetic diseases.  相似文献   

6.
The clinical severity of Osteogenesis Imperfecta (OI), also known as the brittle bone disease, relates to the extent of conformational changes in the collagen triple helix induced by Gly substitution mutations. The lingering question is why Gly substitutions at different locations of collagen cause different disruptions of the triple helix. Here, we describe markedly different conformational changes of the triple helix induced by two Gly substitution mutations placed only 12 residues apart. The effects of the Gly substitutions were characterized using a recombinant collagen fragment modeling the 63-residue segment of the alpha1 chain of type I collagen containing no Hyp (residues 877-939) obtained from Escherichia coli. Two Gly --> Ser substitutions at Gly-901 and Gly-913 associated with, respectively, mild and severe OI variants were introduced by site-directed mutagenesis. Biophysical characterization and limited protease digestion experiments revealed that while the substitution at Gly-901 causes relatively minor destabilization of the triple helix, the substitution at Gly-913 induces large scale unfolding of an unstable region C-terminal to the mutation site. This extensive unfolding is caused by the intrinsic low stability of the C-terminal region of the helix and the mutation induced disruption of a set of salt bridges, which functions to lock this unstable region into the triple helical conformation. The extensive conformational changes associated with the loss of the salt bridges highlight the long range impact of the local interactions of triple helix and suggest a new mechanism by which OI mutations cause severe conformational damages in collagen.  相似文献   

7.
Even a single Gly substitution in the triple helix domain of collagen leads to pathological conditions while natural interruptions are suggested to play important functional roles. Two peptides—one mimicking a pathological Gly–Ser substitution (ERSEQ) and the other one modeling a similar natural interruption sequence (DRSER)—are designed to facilitate the comparison for elucidating the molecular basis of their different biological roles. CD and NMR investigation of peptide ERSEQ indicates a reduction of the thermal stability and disruption of hydrogen bonding at the Ser mutation site, providing a structural basis of the OI disease resulting from the Gly–Ser mutation in the highly charged RGE environment. Both CD and NMR real‐time folding results indicate that peptide ERSEQ displays a comparatively slower folding rate than peptide DRSER, suggesting that the Gly–Ser mutation may lead to a larger interference in folding than the natural interruption in a similar RSE context. Our studies suggest that unlike the rigid GPO environment, the abundant R(K)GE(D) motif may provide a more flexible sequence environment that better accommodates mutations as well as interruptions, while the electrostatic interactions contribute to its stability. These results shed insight into the molecular features of the highly charged motif and may aid the design of collagen biomimetic peptides containing important biological sites.  相似文献   

8.
Bhate M  Wang X  Baum J  Brodsky B 《Biochemistry》2002,41(20):6539-6547
The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.  相似文献   

9.
Xu Y  Bhate M  Brodsky B 《Biochemistry》2002,41(25):8143-8151
Peptide T1-892 is a triple-helical peptide designed to include two distinct domains: a C-terminal (Gly-Pro-Hyp)(4) sequence, together with an N-terminal 18-residue sequence from the alpha1(I) chain of type I collagen. Folding experiments of T1-892 using CD spectroscopy were carried out at varying concentrations and temperatures, and fitting of kinetic models to the data was used to obtain information about the folding mechanism and to derive rate constants. Proposed models include a heterogeneous population of monomers with respect to cis-trans isomerization and a third-order folding reaction from competent monomer to the triple helix. Fitting results support a nucleation domain composed of all or most of the (Gly-Pro-Hyp)(4) sequence, which must be in trans form before the monomer is competent to initiate triple-helix formation. The folding of competent monomer to a triple helix is best described by an all-or-none third-order reaction. The temperature dependence of the third-order rate constant indicates a negative activation energy and provides information about the thermodynamics of the trimerization step. These CD studies complement NMR studies carried out on the same peptide at high concentrations, illustrating how the rate-limiting folding step is affected by changes in concentration. This sequence preference of repeating Gly-Pro-Hyp units for the initiation of triple-helix formation in peptide T1-892 may be related to features in the triple-helix folding of collagens.  相似文献   

10.
Buevich AV  Dai QH  Liu X  Brodsky B  Baum J 《Biochemistry》2000,39(15):4299-4308
Understanding the folding of the proline-rich collagen triple helix requires consideration of the effects of proline cis-trans isomerization and may shed light on the misfolding of collagen in connective tissue diseases. Folding was monitored in real time by heteronuclear 2D NMR spectroscopy for the (15)N labeled positions in the triple-helical peptide T1-892 [GPAGPAGPVGPAGARGPAGPOGPOGPOGPOGV]. In the equilibrium unfolded monomer form, each labeled residue showed multiple peaks with interconversion rates consistent with cis-trans isomerization of Gly-Pro and Pro-Hyp bonds. Real-time NMR studies on the folding of T1-892 showed slow decay of monomer peaks and a concomitant increase in trimer peaks. Gly25 in the C-terminal rich (Gly-Pro-Hyp)(4) domain folds first, consistent with its being a nucleation domain. Analysis of the kinetics indicates that the folding of Gly25 is biphasic and the slower step represents cis-trans isomerization of imino acids. This illustrates that nucleation is limited by cis-trans isomerization. Monitoring Gly6, Gly10, Ala12, and Gly13 monomer and trimer peaks captures the C- to N-terminal propagation of the triple helix, which is also limited by Gly-Pro cis-trans isomerization events. The zipper-like nature of the propagation process is confirmed by the slower rate of folding of Ala6 compared to Gly13, reflecting the larger number of isomerization events encountered by the more N-terminal Ala6. The cis-trans isomerization events at multiple proline residues is a complex statistical process which can be visualized by these NMR studies.  相似文献   

11.
The folding pathway of Rd-apocytochrome b562, a four-helix bundle protein, was characterized using Trp and Ala/Gly pair mutations. We found that the Trp mutants (F65W) of both the fully folded Rd-apocytochrome b562 and a partially unfolded intermediate with the N-terminal helix (helix I) unfolded, fold with identical folding rates, providing direct evidence for the conclusion that the rate-limiting transition state folds before the partially unfolded intermediate; and that this hidden intermediate is an on-pathway intermediate. We further characterized the helical structures formed in the rate-limiting transition state by measuring the folding/unfolding rates for Ala/Gly pair mutations at solvent-exposed positions. Little change in folding rates occurred for the Ala/Gly pair mutations at positions in helix I and the C-terminal regions of helix II and IV. In contrast, a significant difference in folding rates was observed for the Ala/Gly pair mutations in helix III and the N-terminal regions of helix II and IV, suggesting that helix III and the N-terminal regions of helix II and IV are formed in the rate-limiting transition state. These results complement those obtained from earlier studies and help to define the folding pathway of Rd-apocytochrome b562 in more detail.  相似文献   

12.
Collagen is the most abundant protein of mammals and produces highly organized ultrastructures in the extracellular matrix. There are at least 27 types of collagen in mammalian tissues. While fibrillar collagen (eg. types I, II, III, V and XI) assembles into large fibril structures in the extracellular matrix, type IV collagen produces meshwork-like structures in the basement membranes. As collagen has a distinct triple helix structure composed of Gly-X-Y repeats whose Y position is often hydroxyproline, its folding and maturation process differs considerably from globular proteins. Type I collagen is an assembly of two alpha-1 chains and one alpha-2 chain, and each of the alpha chains contain the N-terminal propeptide, C-terminal propeptide and central triple helical region. The 47-kDa heat shock protein (HSP47) is an endoplasmic reticulum (ER)-resident molecular chaperone that specifically recognizes the triple helical region of collagen and is required for productive folding and maturation of collagen molecules. Only in the presence of HSP47, collagen type I molecules can be assembled into the correctly folded triple helices in the ER of mouse embryos without producing misfolded or non-functionally aggregated molecules. HSP47-knockout embryos die just after 10.5 day due to the absence of functional collagen. Recent our data demonstrated that the non-fibrillar network-forming collagen type IV also requires HSP47 for productive folding and maturation. Here, we discuss the role of HSP47 in the folding and maturation of collagen type IV as well as type I.  相似文献   

13.
Vascular Ehlers-Danlos syndrome (EDS) type IV is the most severe form of EDS. In many cases the disease is caused by a point mutation of Gly in type III collagen. A slower folding of the collagen helix is a potential cause for over-modifications. However, little is known about the rate of folding of type III collagen in patients with EDS. To understand the molecular mechanism of the effect of mutations, a system was developed for bacterial production of homotrimeric model polypeptides. The C-terminal quarter, 252 residues, of the natural human type III collagen was attached to (GPP)7 with the type XIX collagen trimerization domain (NC2). The natural collagen domain forms a triple helical structure without 4-hydroxylation of proline at a low temperature. At 33 °C, the natural collagenous part is denatured, but the C-terminal (GPP)7-NC2 remains intact. Switching to a low temperature triggers the folding of the type III collagen domain in a zipper-like fashion that resembles the natural process. We used this system for the two known EDS mutations (Gly-to-Val) in the middle at Gly-910 and at the C terminus at Gly-1018. In addition, wild-type and Gly-to-Ala mutants were made. The mutations significantly slow down the overall rate of triple helix formation. The effect of the Gly-to-Val mutation is much more severe compared with Gly-to-Ala. This is the first report on the folding of collagen with EDS mutations, which demonstrates local delays in the triple helix propagation around the mutated residue.  相似文献   

14.
Mohs A  Li Y  Doss-Pepe E  Baum J  Brodsky B 《Biochemistry》2005,44(6):1793-1799
Missense mutations in the collagen triple-helix that replace one of the required Gly residues in the (Gly-Xaa-Yaa)(n)() repeating sequence have been implicated in various disorders. Although most hereditary collagen disorders are rare, a common occurrence of a Gly replacement mutation is found in the collagenous domain of mannose binding lectin (MBL). A Gly --> Asp mutation at position 54 in MBL is found at a frequency as high as 30% in certain populations and leads to increased susceptibility to infections. The structural and energetic consequences of this mutation are investigated by comparing a triple-helical peptide containing the N-terminal Gly-X-Y units of MBL with the homologous peptide containing the Gly to Asp replacement. The mutation leads to a loss of triple-helix content but only a small decrease in the stability of the triple-helix (DeltaT(m) approximately 2 degrees C) and no change in the calorimetric enthalpy. NMR studies on specifically labeled residues indicate the portion of the peptide C-terminal to residue 54 is in a highly ordered triple-helix in both peptides, while residues N-terminal to the mutation site have a weak triple-helical signal in the parent peptide and are completely disordered in the mutant peptide. These results suggest that the N-terminal triplet residues are contributing little to the stability of this peptide, a hypothesis confirmed by the stability and enthalpy of shorter peptides containing only the region C-terminal to the mutation site. The Gly to Asp replacement at position 54 in MBL occurs at the boundary of a highly stable triple-helix region and a very unstable sequence. The junctional position of this mutation minimizes its destabilizing effect, in contrast with the significant destabilization seen for Gly replacements in peptides modeling collagen diseases.  相似文献   

15.
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.  相似文献   

16.
A series of phosphonamidates has been synthesized and shown to inhibit human neutrophil collagenase. The compounds all have sequences patterned after the cleavage site in the alpha 1(I) chain of type I collagen, except that the carbonyl group of the Gly residue in subsite P1 has been replaced by a P(= O)(OH) group (abbreviated GlyP). As the central GlyP-Leu unit is lengthened in the N- and C-terminal directions, in accordance with the cleavage sequence found in collagen, inhibition is systematically improved. The best inhibitor is Cbz-GlyP-Leu-Ala-Gly, which inhibits competitively with a KI value of 14 microM. These phosphonamidates are thought to be acting as transition-state analogues.  相似文献   

17.
Type III collagen is a critical collagen that comprises extensible connective tissue such as skin, lung, and the vascular system. Mutations in the type III collagen gene, COL3A1, are associated with the most severe forms of Ehlers-Danlos syndrome. A characteristic feature of type III collagen is the presence of a stabilizing C-terminal cystine knot. Crystal structures of collagen triple helices reported so far contain artificial sequences like (Gly-Pro-Pro)(n) or (Gly-Pro-Hyp)(n). To gain insight into the structural properties exhibited by the natural type III collagen triple helix, we synthesized, crystallized, and determined the structure of a 12-triplet repeating peptide containing the natural type III collagen sequence from residues 991 to 1032 including the C-terminal cystine knot region, to 2.3A resolution. This represents the longest collagen triple helical structure determined to date with a native sequence. Strikingly, the Gly(991)-Gly(1032) structure reveals that the central non-imino acid-containing region adopts 10/3 superhelical properties, whereas the imino acid rich N- and C-terminal regions adhere to a 7/2 superhelical conformation. The structure is consistent with two models for the cystine knot; however, the poor density for the majority of this region suggests that multiple conformations may be adopted. The structure shows that the multiple non-imino acids make several types of direct intrahelical as well as interhelical contacts. The looser superhelical structure of the non-imino acid region of collagen triple helices combined with the extra contacts afforded by ionic and polar residues likely play a role in fibrillar assembly and interactions with other extracellular components.  相似文献   

18.
From a study to understand the mechanism of covalent interaction between collagen types II and IX, we present experimental evidence for a previously unrecognized molecular site of cross-linking. The location relative to previously defined cross-linking sites predicts a specific manner of interaction and folding of collagen IX on the surface of nascent collagen II fibrils. The initial evidence came from Western blot analysis of type IX collagen extracted by pepsin from fetal human cartilage, which showed a molecular species that had properties indicating an adduct between the alpha1(II) chain and the C-terminal domain (COL1) of type IX collagen. A similar component was isolated from bovine cartilage in sufficient quantity to confirm this identity by N-terminal sequence analysis. Using an antibody that recognized the putative cross-linking sequence at the C terminus of the alpha1(IX) chain, cross-linked peptides were isolated by immunoaffinity chromatography from proteolytic digests of human cartilage collagen. They were characterized by immunochemistry, N-terminal sequence analysis, and mass spectrometry. The results establish a link between a lysine near the C terminus (in the NC1 domain) of alpha1(IX) and the known cross-linking lysine at residue 930 of the alpha1(II) triple helix. This cross-link is speculated to form early in the process of interaction between collagen IX molecules and collagen II polymers. A model of molecular folding and further cross-linking is predicted that can spatially accommodate the formation of all six known cross-linking interactions to the collagen IX molecule on a fibril surface. Of particular biological significance, this model can accommodate potential interfibrillar as well as intrafibrillar links between the collagen IX molecules themselves, so providing a mechanism whereby collagen IX could stabilize a collagen fibril network.  相似文献   

19.
Parmar AS  Nunes AM  Baum J  Brodsky B 《Biopolymers》2012,97(10):795-806
Type XXV collagen, or collagen‐like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro‐Hyp‐Gly)10, an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)n domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple‐helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple‐helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple‐helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly‐Xaa‐Yaa sequence and required the triple‐helix conformation. The inhibitory effect of the collagen triple‐helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 795–806, 2012.  相似文献   

20.
Homozygous mutations resulting in formation of alpha1(I)(3) homotrimers instead of normal type I collagen cause mild to severe osteogenesis imperfecta (OI) in humans and mice. Limited studies of changes in thermal stability of type I homotrimers were reported previously, but the results were not fully consistent. We revisited this question in more detail using purified tendon collagen from wild-type (alpha1(I)(2)alpha2(I) heterotrimers) and oim (alpha1(I)(3)) mice as well as artificial alpha1(I)(3) homotrimers obtained by refolding of rat-tail-tendon collagen. We found that at the same heating rate oim homotrimers completely denature at approximately 2.5deg.C higher temperature than wild-type heterotrimers, as determined by differential scanning calorimetry. At the same, constant temperature, homotrimers denature approximately 100 times slower than heterotrimers, as determined by circular dichroism. Detailed analysis of proteolytic cleavage at different temperatures revealed that microunfolding of oim homotrimers and wild-type heterotrimers occurs at similar rate but within a number of different sites. In particular, the weakest spot on the oim triple helix is located approximately 100 amino acid residues from the C-terminal end within the cyanogen bromide peptide CB6. The same microunfolding site is also present in wild-type collagen, but the weakest spot of the latter is located close to the N-terminal end of CB8. Amino acid analysis and differential gel electrophoresis showed virtually no posttranslational overmodification of oim mouse tendon collagen. Moreover, thermal stability and microunfolding of artificial rat-tail-tendon homotrimers were similar to oim homotrimers. Thus, the observed changes are associated with difference in the amino acid composition of alpha1(I) and alpha2(I) chains rather than posttranslational overmodification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号