首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human serum apotransferrin was exposed to the isolated myeloperoxidase-H2O2-halide system or to phorbol ester-activated human neutrophils. Such treatment resulted in a marked loss in transferrin iron binding capacity as well as concomitant iodination of transferrin. Each component of the cell-free system (myeloperoxidase, H2O2, iodide) or neutrophil system (neutrophils, phorbol ester, iodide) was required in order to observe these changes. In the cell-free system, the H2O2 requirement was fulfilled by either reagent H2O2 or the peroxide-generating system glucose oxidase plus glucose. Both loss of iron binding capacity and transferrin iodination by either the myeloperoxidase system or activated neutrophils were blocked by azide or catalase. The isolated peroxidase system had an acidic pH optimum, whereas the intact cell system was more efficient at neutral pH. The kinetics of changes in iron binding capacity and iodination closely paralleled one another, exhibiting t1/2 values of less than 1 min for the myeloperoxidase-H2O2 system, 3-4 min for the myeloperoxidase-glucose oxidase system, and 8 min for the neutrophil system. That the occupied binding site is protected from the myeloperoxidase system was suggested by 1) a failure to mobilize iron from iron-loaded transferrin, 2) an inverse correlation between initial iron saturation and myeloperoxidase-mediated loss of iron binding capacity, and 3) decreased myeloperoxidase-mediated iodination of iron-loaded versus apotransferrin. Since as little as 1 atom of iodide bound per molecule of transferrin was associated with substantial losses in iron binding capacity, there appears to be a high specificity of myeloperoxidase-catalyzed iodination for residues at or near the iron binding sites. Amino acid analysis of iodinated transferrin (approximately 2 atoms/molecule) demonstrated that iodotyrosine was the predominant iodinated species. These observations document the ability of neutrophils to inactivate transferrin iron binding capacity via the secretion of myeloperoxidase, formation of H2O2, and subsequent myeloperoxidase-catalyzed iodination. This sequence of events may help to explain the changes in iron metabolism associated with the in vivo inflammatory response.  相似文献   

2.
The reticuloendothelial system is responsible for removing old and damaged erythrocytes from the circulation, allowing iron to return to bone marrow for hemoglobin synthesis. Cultured bone marrow macrophages were loaded with 59Fe-labelled erythroblasts and iron mobilization was studied. After erythroblast digestion, iron taken up by macrophages was found in ferritin as well as in a low-molecular-weight fraction. The analysis of iron mobilization from macrophages shows: (1) the iron was mobilized as ferritin. (2) A higher mobilization was observed when apotransferrin was present in the culture medium. (3) In the presence of apotransferrin in the culture medium, part of the iron was found as transferrin iron. (4) Iron transfer from ferritin to apotransferrin was observed in a cell-free culture medium and this process was temperature independent. The results indicate that after phagocytosis of 59Fe-labelled erythroblasts by macrophages, iron is mobilized as ferritin. In the plasma, this iron can be transferred to apotransferrin.  相似文献   

3.
The interaction of various anions with human serum transferrin was investigated due to the concomitant binding of iron and a synergistic anion to form the transferrin-anion-iron complex. Two tetrahedral oxyanion oxidizing agents, periodate and permanganate, were found to partially inactivate transferrin when used at equimolar ratios of oxidizing agent to protein active sites. Hypochlorite, a strong oxidizing agent with little structural similarity to periodate and permanganate, had little effect on iron-binding activity when used at similar low molar ratios of reagent to transferrin active sites. Transferrin treated with a 3:1 molar ratio of periodate or permanganate to active sites lost 74 or 67% of its iron-binding capacity, respectively. The composition of the buffer affected the extent of transferrin inactivation by periodate and permanganate; for example, the extent of inactivation by periodate was threefold greater in a borate buffer than in a phosphate buffer. Comparative oxidations in buffer systems suggest the following order of affinity of three buffer anions for the apotransferrin metal-binding center: phosphate greater than bicarbonate greater than borate. The interaction of phosphate ions with the iron-transferrin complex was also examined due to the increased susceptibility to periodate inactivation of iron-saturated transferrin in phosphate buffer (M. H. Penner, R. B. Yamasaki, D. T. Osuga, D. R. Babin, C. F. Meares, and R. E. Feeney (1983) Arch. Biochem. Biophys. 225, 740-747). The apparent destabilization of the iron-transferrin complex in phosphate buffer was found to be due to the competitive removal of iron by phosphate from the iron-protein complex. We found that phenylglyoxal-modified Fe-transferrin, with no loss of bound iron, was much more resistant to iron removal by phosphate and other competitive chelators.  相似文献   

4.
A Bomford  S P Young  R Williams 《Biochemistry》1985,24(14):3472-3478
We have investigated the effect of increasing concentrations of methylamine (5, 10, and 25 mM) on the removal of iron from the two iron-binding sites of transferrin during endocytosis by human erythroleukemia (K562) cells. The molecular forms of transferrin released from the cells were analyzed by polyacrylamide gel electrophoresis in 6 M urea. Endocytosis of diferric transferrin was efficient since greater than 10% of surface-bound protein escaped endocytosis and was released in the diferric form. Although transferrin exocytosed from control cells had been depleted of 80% of its iron and contained 65-70% apotransferrin, iron-bearing species were also released (15% C-terminal monoferric; 10% N-terminal; 10% diferric). The ratio of the two monoferric species (C/N) was 1.32 +/- 0.12 (mean +/- SD; n = 4), suggesting that iron in the N-terminal site was more accessible to cells. In the presence of methylamine there was a concentration-dependent increase in the proportion of diferric transferrin release (less than 80% at 25 mM) and a concomitant decrease in apotransferrin. Small amounts of the iron-depleted species, especially apotransferrin, appeared before diferric transferrin, suggesting that these were preferentially released from the cells. The discrepancy between the proportions of the monoferric transferrin species noted with control cells was enhanced at all concentrations of methylamine, most markedly at 10 mM when the C/N ratio was 2.4. The N-terminal site of transferrin loses its iron at a higher pH than the C-terminal site, and so by progressively perturbing the pH of the endocytic vesicle we have increased the difference between the two sites observed with control cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The relation of the growth-stimulating capacity of transferrin to its iron-transporting function was investigated in mouse hybridoma PLV-01 cells cultivated in a chemically defined medium. The cells were precultivated in protein-free medium supplemented either with ferric citrate (cells with a high intracellular iron level) or with iron-saturated transferrin (cells with a low intracellular iron level). Iron uptake was monitored after the application of 59Fe-labeled ferric citrate or pig transferrin. Cultivation of the cells at the optimum growth-stimulating concentration (500 microM) of ferric citrate resulted in an intracellular iron level about 100-fold higher than that of cells cultivated at the optimum transferrin concentration (5 micrograms/ml). Replacement of pig transferrin with bovine transferrin resulted in similar intracellular iron levels, but the growth-stimulating effect of bovine transferrin was more than one order of magnitude lower. Cells with a high intracellular iron level grew equally well when cultivated with iron-saturated transferrin or with apotransferrin + deferoxamine (2 micrograms/ml). On the other hand, cells with a low intracellular iron level required iron-saturated transferrin for further growth and apotransferrin + deferoxamine was ineffective. The results suggest that transferrin can act as a cell growth factor only in the iron-saturated form. However, several findings of this work indicate that supplying cells with iron cannot be accepted as the full explanation of the transferrin growth-stimulating effect.  相似文献   

6.
Rat liver ferritin is an effective donor of iron to rat hepatocytes. Uptake of iron from ferritin by the cells is partially inhibited by including apotransferrin in the culture medium, but not by inclusion of diferric transferrin. This inhibition is dependent on the concentration of apotransferrin, with a 30% depression in iron incorporation in the cells detected at apotransferrin concentrations above 40 micrograms/ml. However, apotransferrin does not interfere with uptake of 125I-labeled ferritin, suggesting that apotransferrin decreases retention of iron taken up from ferritin by hepatocytes by sequestering a portion of released iron before it has entered the metabolic pathway of the cells. The iron chelators desferrioxamine (100 microM), citrate (10 mM) and diethylenetriaminepentaacetate (100 microM) reduce iron uptake by the cells by 35, 25 and 8%, respectively. In contrast, 1 mM ascorbate increases iron accumulation by 20%. At a subtoxic concentration of 100 microM, chloroquine depresses ferritin and iron uptake by hepatocytes by more than 50% after 3 h incubation. Chloroquine presumably acts by retarding lysosomal degradation of ferritin and recycling of ferritin receptors.  相似文献   

7.
The reticuloendothelial system has a central role in erythropoiesis and iron homeostasis. An important function of reticuloendothelial macrophages is phagocytosis of senescent red blood cells. The iron liberated from heme is recycled for delivery to erythrocyte precursors for a new round of hemoglobin synthesis. The molecular mechanism by which recycled iron is released from macrophages remains unresolved. We have investigated the mechanism of macrophage iron efflux, focusing on the role of ceruloplasmin (Cp), a copper protein with a potent ferroxidase activity that converts Fe2+ to Fe3+ in the presence of molecular oxygen. As shown by others, Cp markedly increased iron binding to apotransferrin at acidic pH; however, the physiological significance of this finding is uncertain because little stimulation was observed at neutral pH. Introduction of a hypoxic atmosphere resulted in marked Cp-stimulated binding of iron to apotransferrin at physiological pH. The role of Cp in cellular iron release was examined in U937 monocytic cells induced to differentiate to the macrophage lineage. Cp added at its normal plasma concentration increased the rate of 55Fe release from U937 cells by about 250%. The stimulation was absolutely dependent on the presence of apotransferrin and hypoxia. Cp-stimulated iron release was confirmed in mouse peritoneal macrophages. Stimulation of iron release required an intracellular "labile iron pool" that was rapidly depleted in the presence of Cp and apotransferrin. Ferroxidase-mediated loading of iron into apotransferrin was critical for iron release because ferroxidase-deficient Cp was inactive and because holotransferrin could not substitute for apotransferrin. The extracellular iron concentration was critical as shown by inhibition of iron release by exogenous free iron, and marked enhancement of release by an iron chelator. Together these data show that Cp stimulates iron release from macrophages under hypoxic conditions by a ferroxidase-dependent mechanism, possibly involving generation of a negative iron gradient.  相似文献   

8.
The effect of pH on the binding of apotransferrin and diferric transferrin to reticulocyte membrane receptors was investigated using rabbit transferrin and rabbit reticulocyte ghosts, intact cells and a detergent-solubilized extract of reticulocyte membranes. The studies were performed within the pH range 4.5–8.0. The binding of apotransferrin to ghosts and membrane extracts and its uptake by intact reticulocytes was high at pH levels below 6.5 but decreased to very low values as the pH was raised above 6.5. By contrast, diferric transferrin showed a high level of binding and uptake between pH 7.0 and 8.0 in addition to binding only slightly less than did apotransferrin at pH values below 6.5. It is proposed that the high affinity of apotransferrin for its receptor at lower pH values and low affinity at pH 7.0 or above allow transferrin to remain bound to the receptor when it is within acidic intracellular vesicles, even after loss of its iron, but also allow ready release from the cell membrane when it is exteriorized by exocytosis after iron uptake. The binding of transferrin to the receptor throughout the endocytosis-exocytosis cycle may protect it from proteolytic breakdown and aid in its recycling to the outer cell membrane  相似文献   

9.
The role of the two iron-binding sites of rat transferrin in the exchange of iron with cells has been assessed using urea polyacrylamide gel electrophoresis to separate and quantitate the four possible molecular species of transferrin generated during the incubation of 125I-labelled transferrin with rat reticulocytes and hepatocytes. Addition of diferric transferrin to reticulocytes led directly to the appearance of apotransferrin together with small and comparable amounts of the two monoferric transferrins. After 2 h 44.8% of the iron had been removed by the cells, and of the iron-depleted transferrin 71.8% was apotransferrin, the remainder being monoferric transferrin, 16.1% with N-terminal iron and 12.1% with C-terminal iron. A similar pattern emerged with hepatocytes, but the rate of iron removal was slower and the proportion of apotransferrin generated was lower. After 4 h 10.9% of the iron had been removed from the transferrin and the distribution of the iron-depleted protein was: apotransferrin 26.9% and monoferric (N-terminal) 39.2%, (C-terminal) 33.9%. The appearance of apotransferrin during each incubation and the generation of both monoferric transferrins suggest that both cell types are able to remove iron from differic transferrin in pairwise fashion and that they do not appreciably distinguish between the two iron-binding sites of the protein. Release of iron from hepatocytes to apotransferrin lead to the appearance of both monferric species and then to increasing amounts of diferric transferrin. The process of iron release did not seem to distinguish between the vacant iron-binding sites of transferrin.  相似文献   

10.
Transfer of iron from native porcine uteroferrin to apotransferrin was investigated using EPR spectroscopy. Purple (oxidized) or pink (reduced) forms of uteroferrin were incubated with porcine or human apotransferrin under conditions of temperature (37 degrees C) and pH (6.8) approximating those found in the allantoic fluid of the pregnant sow. Studies were also performed in the presence of mediators such as ascorbate, citrate, and ATP in concentrations previously claimed to be effective in promoting large-scale transfer of iron (Buhi, W. C., Ducsay, C. A., Bazer, F. W., and Roberts, R. M. (1982) J. Biol. Chem. 257, 1712-1723). Our experiments indicate that even in the presence of mediators, less than 20% of the iron in uteroferrin is transferred to apotransferrin at the end of 24 h and such transfer may be accompanied by denaturation of uteroferrin. We therefore conclude that the direct transfer of iron to apotransferrin is unlikely to be a physiological role of uteroferrin.  相似文献   

11.
High-dose chemotherapy of patients with haematological malignancies results in extracellular iron accumulation and appearance of non-transferrin-bound iron, which is thought to predispose the patients to septic infections and contribute to organ toxicity. We describe the development of a human plasma-derived apotransferrin product for iron binding therapy. The product is purified from Cohn fraction IV of human plasma by two ion exchange chromatography steps and ultrafiltration. The process comprises solvent detergent treatment as the main virus inactivation step and 15 nm virus filtration and polyethylene glycol precipitation as removal steps for physico-chemically resistant infectious agents. Product characterization by electrospray and MALDI-TOF mass spectrometry indicated no other chemical modifications than N-linked glycan chains and disulphide bonds, except minor oxidation. The purity of the product was more than 98%, main impurities being IgG, IgA and hemopexin. The product had intact iron binding capacity and native conformation. A stable liquid formulation for the finished product was developed. The product has proved safe and well tolerated in early clinical trials in iron binding therapy.  相似文献   

12.
Freshly isolated rat heptocytes display about 36 700 high-affinity sites to which deferric transferrin may bind with an apparent association constant of 1.62·107 1·mol?1.Uptake of iron from diferric transferrin by hepatocytes is linear with time and is accelerated at increased differric transferrin concentrations.Apotransferrin is able to decrease net iron uptake by hepatocytes from diferric transferrin by a process not dependent on the apotransferrin concentrations used or on the rate at which the cells take up iron. Immunoprecipitation of the apotransferrin during these incubations indicates that iron is being released from the cells to apotransferrin at the same time as iron is being taken up from diferric transferrin. The simultaneous uptake and release of iron, and the insensitivity to apotransferrin concentration, suggest that the processes of iron uptake and release occur via separate mechanisms. The effect of apotransferrin on net retention of iron may be one way in which the in vivo distribution of iron between sites of storage and utilization is controlled.  相似文献   

13.
The chemotherapeutic agent, bleomycin, forms a 1:1complex with both Fe(III) and Fe(II). The rate offerric ion transfer from bleomycin toapotransferrin is rather slow. However, when ascorbate was added toFe(III)-bleomycin priorto exposure to apotransferrin, the transfer rate was markedly increased. Ascorbatereadilyreduces Fe(III)-bleomycin to Fe(II)-bleomycin. A second order rate constant of 2.4 mM min wasestimated for this reaction. Fe(II)-bleomycinimmediately combines with O 2 , generating the so-called'acti-vatedbleomycin' complex. The data suggest that a reduced form of iron-bleomycin more readilydonatesits iron ion to apotransferrin. Reoxidation of ferrous ions, andFe(III)-transferrin formation occur rapidly.  相似文献   

14.
The release of iron by Sertoli cells in culture   总被引:1,自引:0,他引:1  
In seminiferous tubules, iron transport from the blood to the abluminal germinal cells must occur through the Sertoli cell cytoplasm. We investigated the release of previously accumulated iron by cultured Sertoli cells. We found that Sertoli cells contain easily releasable and less easily releasable iron pools. Iron is released in a low molecular weight form (molecular weight less than 30,000). A high concentration of this low molecular weight iron in the medium reduces further iron release by Sertoli cells, whereas the addition of more medium or fresh medium increases further iron release. Apotransferrin stimulates the release of iron in a dose-dependent manner by chelating the low molecular weight iron. Rat and human apotransferrin are completely competitive in this respect. Diethylenetriamine penta acetic acid (DTPA), an extracellular iron chelator, and apotransferrin compete for iron binding and stimulation of iron release, indicating that no binding or uptake of the chelator by the cells is required. Desferrioxamine (DFO), an intracellular iron chelator, on the other hand, increases iron release more drastically, and apotransferrin cannot compete with it for iron. The addition of extracellular iron also increases the amount of 59Fe in the medium, probably by reducing the re-uptake of 59Fe. This is also demonstrated with primaquine, which blocks endocytosis and increases the amount of 59Fe in the medium. The presence of germinal cells also stimulates the release of iron by Sertoli cells. When cocultured, the germinal cells internalize iron as it is release by Sertoli cells.  相似文献   

15.
We investigated the effect of free, non-transferrin-bound iron occurring in haematological stem cell transplant patients on growth of Staphylococcus epidermidis in serum in vitro, and prevention of bacterial growth by exogenous apotransferrin. S. epidermidis did not grow in normal serum at inoculated bacterial densities up to 10(3) cfu ml(-1) but slow growth could be detected at higher initial inocula. Addition of free iron abolished the growth-inhibitory effect of serum, whereas addition of apotransferrin again restored it. Appearance of free iron and loss of growth inhibition coincided in patient serum samples taken daily during myeloablative therapy. Intravenously administered apotransferrin effectively bound free iron and restored the growth inhibition in patient sera. The results suggest that exogenous apotransferrin might protect stem cell transplant patients against infections by S. epidermidis and possibly other opportunistic pathogens.  相似文献   

16.
We investigated the effect of free, non-transferrin-bound iron occurring in haematological stem cell transplant patients on growth of Staphylococcus epidermidis in serum in vitro, and prevention of bacterial growth by exogenous apotransferrin. S. epidermidis did not grow in normal serum at inoculated bacterial densities up to 10(3) cfu ml(-1) but slow growth could be detected at higher initial inocula. Addition of free iron abolished the growth-inhibitory effect of serum, whereas addition of apotransferrin again restored it. Appearance of free iron and loss of growth inhibition coincided in patient serum samples taken daily during myeloablative therapy. Intravenously administered apotransferrin effectively bound free iron and restored the growth inhibition in patient sera. The results suggest that exogenous apotransferrin might protect stem cell transplant patients against infections by S. epidermidis and possibly other opportunistic pathogens.  相似文献   

17.
Nonheme iron accumulates in CNS tissue after ischemic and hemorrhagic insults and may contribute to cell loss. The source of this iron has not been precisely defined. After blood-brain barrier disruption, CNS cells may be exposed to plasma concentrations of transferrin-bound iron (TBI), which exceed that in the CSF by over 50-fold. In this study, the hypothesis that these concentrations of TBI produce cell iron accumulation and neurotoxicity was tested in primary cortical cultures. Treatment with 0.5-3 mg/ml holotransferrin for 24 h resulted in the loss of 20-40% of neurons, associated with increases in malondialdehyde, ferritin, heme oxygenase-1, and iron; transferrin receptor-1 expression was reduced by about 50%. Deferoxamine, 2,2′-bipyridyl, Trolox, and ascorbate prevented all injury, but apotransferrin was ineffective. Cell TBI accumulation was significantly reduced by deferoxamine, 2,2′-bipyridyl, and apotransferrin, but not by ascorbate or Trolox. After treatment with 55Fe-transferrin, approximately 40% of cell iron was exported within 16 h. Net export was increased by deferoxamine and 2,2′-bipyridyl, but not by apotransferrin. These results suggest that downregulation of transferrin receptor-1 expression is insufficient to prevent iron-mediated death when neurons are exposed to plasma concentrations of TBI. Chelator therapy may be beneficial for acute CNS injuries associated with loss of blood-brain barrier integrity.  相似文献   

18.
T T Loh 《Life sciences》1983,32(8):915-920
Measurement of the distribution of the four species of transferrin, viz, apotransferrin, diferric transferrin and the two monoferric transferrin, before and after incubation of iron-rich rabbit transferrin with rabbit reticulocytes showed that not all transferrin released from the cells were in the form of apotransferrin. Instead, a mixture of all four species of the protein was released with apotransferrin and C-terminal monoferric transferrin being the major fractions. The buffer solution containing 125I-labelled transferrin showed a continuous gain in percentages in apotransferrin and C-terminal monoferric transferrin after each incubation with reticulocytes. The N-terminal monoferric transferrin, however, remained unchanged suggesting that in the process of transferrin uptake by cells, the diferric transferrin releases its iron from the acid-labile site at N-domain first before the other iron from the acid-stable site.  相似文献   

19.
Harris (Biochemistry 24 (1985) 7412) reports that inorganic anions bind to human apotransferrin in such a way as to perturb the ultraviolet spectrum. The locus of binding is thought to involve the specific metal/anion-binding sites since no perturbation is observed with Fe3+-transferrin-CO3(2-). Paradoxically, we were unable to demonstrate the formation of Fe3+-transferrin-inorganic anion complexes despite the presence of high concentrations of SO4(2-), H2PO4-, Cl-, ClO4- or NO3-. Similar results were found for human lactoferrin. Electron paramagnetic resonance spectroscopy and visible spectrophotometry were used to monitor the results. An attempt to form the H2PO4- complex by displacement of glycine from Fe3+-transferrin-glycine resulted only in the disruption of the ternary complex. A series of inorganic anions varied in their ability to release iron from Fe3+-transferrin-CO3(2-) at pH 5.5, the approximate pH of endosomes where iron release takes place within cells. The order of effectiveness was H2P2O7(2-) much greater than H2PO4- greater than SO4(2-) greater than NO3- greater than Cl- greater than ClO4-. The rate of iron removal from Fe3+-transferrin-CO3(2-) at pH 5.5 by a 4-fold excess of pyrophosphate was greatly enhanced by physiological NaCl concentration. Iron removal was complete within 10 min, the approximate time for iron release from Fe3+-transferrin-CO3(2-) in developing erythroid cells. Thus, inorganic anions may have a significant effect on the release of iron under physiological conditions despite the fact that such inorganic anions cannot act as synergistic anions. The results are discussed in relation to a special role for the carboxylate group in allowing ternary complex formation.  相似文献   

20.
Growing HepG2 cells contain 50,000 functional surface transferrin-binding sites (Ciechanover, A., Schwartz, A.L., and Lodish, H.F. (1983) Cell 32,267-275) and 100,000 intracellular sites. At saturating concentrations of [59Fe]transferrin, and under conditions in which protein synthesis is blocked, iron uptake is linear for several hours at a rate of 9,500 transferrin molecules/cell/min. Thus, each receptor must recycle a ligand, on the average, each 15.8 min. Surface-bound transferrin is rapidly endocytosed (t1/2 = 3.5 min). All of the iron remains within the cell, while the apotransferrin is rapidly (t1/2 = 5.0 min) secreted into the medium. Previously, we showed (Dautry-Varsat, A., Ciechanover, A., and Lodish, H.F. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 2258-2262) that exposure of a ferrotransferrin-receptor complex to medium of pH less than 5.0 results in dissociation of iron, but that apotransferrin remains bound to its receptor. If the pH is raised to 7.0, such as would occur when an acidic intracellular vesicle fuses with the plasma membrane, apotransferrin is very rapidly dissociated (t1/2 = 17 s at 37 degrees C) from its receptor. Taken together, these results indicate that transferrin remains bound to its receptor throughout the endocytic cycle. In the present study, we have directly measured all the kinetic parameters involved in the transferrin receptor cycle. They are similar to those of the asialoglycoprotein receptor in the same cell line, and can be described by a simple kinetic model. In the presence of lysosomotropic agents, ferrotransferrin binds to its surface receptor and is internalized normally. However, iron is not dissociated from transferrin, and ferrotransferrin recycles back to the cell surface and is secreted into the medium. We conclude that the low pH in endocytic vesicles is essential for the dissociation of iron from transferrin and its delivery to the cell, but is not required for recycling of transferrin, and presumably of its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号