首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of in vivo correction of five "mismatch analogues", incorporated into M13mp9 DNA, was studied in an attempt to elucidate the structural determinants required for mismatch recognition by the repair machinery of E. coli. Inosine was efficiently removed from an I/T mismatch, presumably by the action of hypoxanthine glycosylase. The mismatch analogues DI/T (DI = 7-deazainosine), Tu/C (Tu = tubercidin), N/C (N = nebularine) and DN/C (DN = 7-deazanebularine) were left largely unrepaired, giving rise to high yields of mutant phenotype. The efficiency of correction of these mismatch analogues could be correlated with their structure within the base-pair.  相似文献   

2.
The ability of the methyl-directed mismatch repair system to recognize and repair the exocyclic adducts propanodeoxyguanosine (PdG) and pyrimido[1,2-alpha]purin-10(3H)-one (M(1)G), the major adduct derived from the endogenous mutagen malondialdehyde, has been assessed both in vivo and in vitro. Both adducts were site-specifically incorporated into M13MB102 DNA, and the adducted genomes were electroporated into wild-type or mutS-deficient Escherichia coli strains. A decrease in mutations caused by both adducts was observed in mutS-deficient strains, suggesting that MutS was binding to the adducts and blocking repair by nucleotide excision repair. This hypothesis was supported by the differences in mutation frequency observed when hemimethylated genomes containing PdG on the (-)-strand were electroporated into a uvrA(-) strain. The ability of purified MutS to bind to PdG- or M(1)G-containing 31-mer duplexes in vitro was assessed using both surface plasmon resonance and gel shift assays. MutS bound to M(1)G:T-containing duplexes with similar affinity to a G:T mismatch but less strongly to M(1)G:C- and PdG-containing duplexes. Dissociation from each of the adduct-containing duplexes occurred at a faster rate than from a G:T mismatch. The present results indicate that MutS can bind to exocyclic adducts resulting from endogenous DNA damage and trigger their removal by mismatch repair or protect them from removal by nucleotide excision repair.  相似文献   

3.
The crystal structures of MutS protein from Thermus aquaticus and Escherichia coli in a complex with a mismatch-containing DNA duplex reveal that the Glu residue in a conserved Phe-X-Glu motif participates in a hydrogen-bonded contact with either an unpaired thymidine or the thymidine of a G-T base-base mismatch. Here, the role of hydrogen bonding in mismatch recognition by MutS is assessed. The relative affinities of MutS for DNA duplexes containing nonpolar shape mimics of A and T, 4-methylbenzimidazole (Z), and difluorotoluene (F), respectively, that lack hydrogen bonding donors and acceptors, are determined in gel mobility shift assays. The results provide support for an induced fit mode of mismatch binding in which duplexes destabilized by mismatches are preferred substrates for kinking by MutS. Hydrogen bonding between the O epsilon 2 group of Glu and the mismatched base contributes only marginally to mismatch recognition and is significantly less important than the aromatic ring stack with the conserved Phe residue. A MutS protein in which Ala is substituted for Glu(38) is shown to be defective for mismatch repair in vivo. DNA binding studies reveal a novel role for the conserved Glu residue in the establishment of mismatch discrimination by MutS.  相似文献   

4.
The antitumor agent cis-diamminedichloroplatinum(II) (cisplatin) introduces cytotoxic DNA damage predominantly in the form of intrastrand crosslinks between adjacent purines. Binding assays using a series of duplex oligonucleotides containing a single 1,2 diguanyl intrastrand crosslink indicate that human cell extracts contain factors that preferentially recognise this type of damage when the complementary strand contains T opposite the 3', and C opposite the 5'guanine in the crosslink. Under the conditions of the band-shift assay used, little binding is observed if the positions of the T and C are reversed in the complementary strand. Similarly, duplexes containing CC or TT opposite the crosslink are recognised relatively poorly. The binding activity is absent from extracts of the colorectal carcinoma cell lines LoVo and DLD-1 in which the hMutSalpha mismatch recognition complex is inactivated by mutation. Extensively purified human hMutSalpha exhibits the same substrate preference and binds to the mismatched platinated DNA at least as well as to an identical unplatinated duplex containing a single G.T mismatch. It is likely, therefore, that human mismatch repair may be triggered by 1,2 diguanyl intrastrand crosslinks that have undergone replicative bypass.  相似文献   

5.
The tumor suppressor protein p53 modulates cellular response to DNA damage by a variety of mechanisms that may include direct recognition of some forms of primary DNA damage. Linear 49-base pair duplex DNAs were constructed containing all possible single-base mismatches as well as a 3-cytosine bulge. Filter binding and gel retardation assays revealed that the affinity of p53 for a number of these lesions was equal to or greater than that of the human mismatch repair complex, hMSH2-hMSH6, under the same binding conditions. However, other mismatches including G/T, which is bound strongly by hMSH2-hMSH6, were poorly recognized by p53. The general order of affinity of p53 was greatest for a 3-cytosine bulge followed by A/G and C/C mismatches, then C/T and G/T mismatches, and finally all the other mismatches.  相似文献   

6.
A set of four 9-mer oligonucleotide duplexes formed between the 5'-GCATNTCAC-3', N=A,C,T,G, and the 5'-GTGATATGC-3' complement has been proposed as a model system for the investigation of novel oligonucleotide analogues (candidates for antisense use) binding selectivity. Raman measurements were carried out on a set of natural DNA 9-mer in order to verify suitability of the model and to obtain reference spectral data. Difference Raman spectra between the mismatch and match duplexes obtained at 15 degrees C exhibited numerous spectral features sensitively indicating the structural changes. All the three mismatches only very weakly disturb the overall B-form conformation of the duplex. Significant structural changes that occurred at the mismatch site are reflected mainly by the neighboring thymidine Raman bands at 1377, 1650, and 1675 cm(-1). The intensity change of the two latter bands is almost the same for the T:G and the T:T mismatch while in the case of the T:C mismatch it is just opposite, demonstrating a very different arrangement of the mismatched pair.  相似文献   

7.
A 34-mer oligonucleotide containing a single 7,8-dihydro-8-oxoguanine (8-OxoG) residue was used to study the enzymatic and DNA binding properties of the Fpg protein from E. coli. The highest rates of incision of the 8-OxoG containing strand by the Fpg protein were observed for duplexes where 8-OxoG was opposite C (*G/C) or T (*G/T). In contrast, the rates of incision of duplexes containing 8-OxoG opposite G (*G/G) and A (*G/A) were 5-fold and 200-fold slower. Gel retardation studies showed that the Fpg protein had a strong affinity for duplexes where the 8-OxoG was opposite pyrimidines and less affinity for duplexes where the 8-OxoG was opposite purines. KDapp values were 0.6 nM (*G/C), 1.0 nM (*G/T), 6.0 nM (*G/G) and 16.0 nM (*G/A). The Fpg protein also binds to unmodified (G/C) duplex and a KDapp of 90 nM was measured. The cleavage and binding of the (*G/C) duplex were also studied using bacterial crude lysates. Wild type E. coli crude extract incised the 8-OxoG containing strand and formed a specific retardation complex with the (*G/C) duplex. These two reactions were mediated by the Fpg protein, since they were not observed with a crude extract from a bacterial strain whose fpg gene was inactivated. Furthermore, we have studied the properties of 6 mutant Fpg proteins with Cys-->Gly mutations. The results showed that the 2 Fpg proteins with Cys-->Gly mutations outside the zinc finger sequence cleaved the 8-OxoG containing strand, formed complexes with the (*G/C) duplex and suppressed the mutator phenotype of the fpg-1 mutant. In contrast, the 4 Fpg proteins with Cys-->Gly mutations within the zinc finger motif neither cleave nor bind the (*G/C) duplex, nor do these proteins suppress the fpg-1 mutator phenotype.  相似文献   

8.
The helix-coil transitions of the 16 octadecameric DNA duplexes dCGTCGTTTXACAACGTCG X dCGACGTTGTX1AAACGACG with A, T, G, and C for X and X1 were measured by UV-absorption. This sequence was taken from former studies of in vivo determination of efficiencies of mismatch repair (Kramer, Kramer, and Fritz (1984) Cell 38, 879-887). The thermodynamic parameters for double strand and mismatch formation have been obtained by evaluating the partition function of a stack model which allowed for loop formation. As a result the mismatches could be classified into wobble base pairs (T/G, G/G, C/A, A/A, A/G), open base pairs, i.e. permanent loops (T/T, C/T, T/C, C/C), and intermediate or weak base pairs (G/T, A/C, G/A). There is no correlation between Tm and the biological repair efficiency of X/X1. The structure classes, however, as described above show a close correlation: Open base pairs show the lowest repair efficiencies, whereas mismatches with high repair efficiency always belong to the structural class of wobble base pairs. Because of the palindromic nearest neighbors of the variation site X/X1, the influence of next-nearest neighbor interactions could be detected and be estimated to about 1 kJ/mol for one stack.  相似文献   

9.
The cytosine methyltransferases (MTases) M. HhaIand M. HpaII bind substrates in which the target cytosine is replaced by uracil or thymine, i.e. DNA containing a U:G or a T:G mismatch. We have extended this observation to the EcoRII MTase (M. EcoRII) and determined the apparent Kd for binding. Using a genetic assay we have also tested the possibility that MTase binding to U:G mismatches may interfere with repair of the mismatches and promote C:G to T:A mutations. We have compared two mutants of M. EcoRII that are defective for catalysis by the wild-type enzyme for their ability to bind DNA containing U:G or T:G mismatches and for their ability to promote C to T mutations. We find that although all three proteins are able to bind DNAs with mismatches, only the wild-type enzyme promotes C:G to T:A mutations in vivo. Therefore, the ability of M. EcoRII to bind U:G mismatched duplexes is not sufficient for their mutagenic action in cells.  相似文献   

10.
Heptadecaoligodeoxyribonucleotides containing one or more of the bases, 6H,8H-3,4-dihydropyrimido[4,5-c][1,2]oxazin-7-one (P), 2-amino-6-methoxyaminopurine (K), and hypoxanthine (I) and combinations of P with K and I have been synthesised on a DNA synthesiser. The stability of duplexes containing these basemodified oligomers with P/A, P/G, K/C and K/T; P/A, P/G, I/C, I/T and I/A, I/G, I/C, I/T base pairs were compared by measuring their melting transition (Tm) values. Oligomers containing both P and K and P and I were more stable than those with I alone or with mismatches. These oligomers together with one with a P base at the 3'-end were used as primers in polymerase chain reaction (PCR) experiments. They were all effective primers except one with I alone and a triple mismatch. Thus the use of the degenerate bases P and K in primer design is established.  相似文献   

11.
12.
For further characterization of the hybridization properties of peptide nucleic acids (PNAs), the thermodynamics of hybridization of mixed sequence PNA-DNA duplexes have been studied. We have characterized the binding of PNA to DNA in terms of binding affinity (perfectly matched duplexes) and sequence specificity of binding (singly mismatched duplexes) using mainly absorption hypochromicity melting curves and isothermal titration calorimetry. For perfectly sequence-matched duplexes of varying lengths (6-20 bp), the average free energy of binding (DeltaG degrees ) was determined to be -6.5+/-0.3 kJ mol(-1) bp(-1), corresponding to a microscopic binding constant of about 14 M(-1) bp(-1). A variety of single mismatches were introduced in 9- and 12-mer PNA-DNA duplexes. Melting temperatures (T(m)) of 9- and 12-mer PNA-DNA duplexes with a single mismatch dropped typically 15-20 degrees C relative to that of the perfectly matched sequence with a corresponding free energy penalty of about 15 kJ mol(-1) bp(-1). The average cost of a single mismatch is therefore estimated to be on the order of or larger than the gain of two matched base pairs, resulting in an apparent binding constant of only 0.02 M(-1) per mismatch. The impact of a mismatch was found to be dependent on the neighboring base pairs. To a first approximation, increasing the stability of the surrounding region, i.e., the distribution of A.T and G.C base pairs, decreases the effect of the introduced mismatch.  相似文献   

13.
A mismatch-binding protein has been purified an estimated 4500-fold from HeLa nuclear extracts using four different chromatographic steps. Two polypeptides of apparent molecular weight of 160,000 and 100,000 were present in the final affinity-purified fraction as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Partial proteolytic clipping of the protein-DNA complexes visualized after UV treatment indicated that the 100-kDa polypeptide is most likely a degradation product of the 160-kDa polypeptide. UV cross-linking experiments have shown that both these polypeptides bind specifically to oligonucleotide duplexes containing G/T mismatches. Direct DNA binding studies and band-shift competition assays showed that although the mismatch-binding protein binds with highest affinity to oligonucleotides containing G/T mismatches, it is also capable of binding to oligonucleotides containing other mispairs. The purified protein has an associated Mg(2+)-dependent ATPase activity, which is markedly enhanced in the presence of single-stranded DNA. A helicase capable of unwinding a 34-mer oligonucleotide, annealed to a complementary sequence in single-stranded M13, also copurified with the mismatch-binding protein. This reaction occurs in an ATP- and magnesium-dependent manner.  相似文献   

14.
The low affinity of peptide nucleic acid (PNA) to hybridize with DNA in the presence of a mismatch endows PNA with a high degree of discriminatory capacity that has been exploited in therapeutics for the selective inhibition of the expression of point-mutated genes. To obtain a structural basis for this intriguing property, molecular dynamics simulations are carried out on PNA x DNA duplexes formed at the Ki-ras proto-oncogene, comprising the point-mutated (GAT), and the corresponding wild-type (GGT) codon 12. The designed PNA forms an A...C mismatch with the wild-type sequence and a perfect A...T pair with the point mutated sequence. Results show that large movements in the pyrimidine base of the A...C mismatch cause loss of stacking, especially with its penultimate base, concomitant with a variable mismatch hydrogen bond, including its occasional absence. These, in turn, bring about dynamic water interactions in the vicinity of the mismatch. Enthalpy loss and the disproportionate entropy gain associated with these are implicated as the factors contributing to the increase in free energy and diminished stability of PNA x DNA duplex with the A...C mismatch. Absence of these in the isosequential DNA duplex, notwithstanding the A...C mismatch, is attributed to the differences in topology of PNA x DNA vis-à-vis DNA duplexes. It is speculated that similar effects might be responsible for the reduced stability observed in PNA x DNA duplexes containing other base pair mismatches, and also in mismatch containing PNA x DNA duplexes.  相似文献   

15.
The cytosine methyltransferases (MTases) M. HhaIand M. HpaII bind substrates in which the target cytosine is replaced by uracil or thymine, i.e. DNA containing a U:G or a T:G mismatch. We have extended this observation to the EcoRII MTase (M. EcoRII) and determined the apparent Kd for binding. Using a genetic assay we have also tested the possibility that MTase binding to U:G mismatches may interfere with repair of the mismatches and promote C:G to T:A mutations. We have compared two mutants of M. EcoRII that are defective for catalysis by the wild-type enzyme for their ability to bind DNA containing U:G or T:G mismatches and for their ability to promote C to T mutations. We find that although all three proteins are able to bind DNAs with mismatches, only the wild-type enzyme promotes C:G to T:A mutations in vivo. Therefore, the ability of M. EcoRII to bind U:G mismatched duplexes is not sufficient for their mutagenic action in cells. Received: 14 November 1996 / Accepted: 17 February 1997  相似文献   

16.
The thermodynamics governing the denaturation of RNA duplexes containing 8 bp and a central tandem mismatch or 10 bp were evaluated using UV absorbance melting curves. Each of the eight tandem mismatches that were examined had one U-U pair adjacent to another noncanonical base pair. They were examined in two different RNA duplex environments, one with the tandem mismatch closed by G.C base pairs and the other with G.C and A.U closing base pairs. The free energy increments (Delta Gdegrees(loop)) of the 2 x 2 loops were positive, and showed relatively small differences between the two closing base pair environments. Assuming temperature-independent enthalpy changes for the transitions, (Delta Gdegrees(loop)) for the 2 x 2 loops varied from 0.9 to 1.9 kcal/mol in 1 M Na(+) at 37 degrees C. Most values were within 0.8 kcal/mol of previously estimated values; however, a few sequences differed by 1.2-2.0 kcal/mol. Single strands employed to form the RNA duplexes exhibited small noncooperative absorbance increases with temperature or transitions indicative of partial self-complementary duplexes. One strand formed a partial self-complementary duplex that was more stable than the tandem mismatch duplexes it formed. Transitions of the RNA duplexes were analyzed using equations that included the coupled equilibrium of self-complementary duplex and non-self-complementary duplex denaturation. The average heat capacity change (DeltaC(p)) associated with the transitions of two RNA duplexes was estimated by plotting DeltaH degrees and DeltaS degrees evaluated at different strand concentrations as a function of T(m) and ln T(m), respectively. The average DeltaC(p) was 70 +/- 5 cal K(-)(1) (mol of base pairs)(-)(1). Consideration of this heat capacity change reduced the free energy of formation at 37 degrees C of the 10 bp control RNA duplexes by 0.3-0.6 kcal/mol, which may increase Delta Gdegrees(loop) values by similar amounts.  相似文献   

17.
An activity in nuclear extracts of S.cerevisiae binds specifically to heteroduplexes containing four to nine extra bases in one strand. The specificity of this activity (IMR, for insertion mismatch recognition) in band shift assays was confirmed by competition experiments. IMR is biochemically and genetically distinct from the MSH2 dependent, single base mismatch binding activity. The two activities migrate differently during electrophoresis, they are differentially competable and their spectra of mispair binding are distinct. Furthermore, IMR activity is observed in extracts from an msh2- msh3- msh4- strain. IMR exhibits specificity for insertion mispairs in two different sequence contexts. Binding is influenced by the structure of the mismatch since an insertion with a hairpin configuration is not recognized by this activity. IMR does not result from single-strand binding because single-stranded probes to not yield IMR complex and single-stranded competitors are unable to displace insertion heteroduplexes from the complex. Similar results with intrinsically bent duplexes make it unlikely that recognition is conferred by a bend alone. Heteroduplexes bound by IMR do not contain any obvious damage. These findings are consistent with the idea that yeast contains a distinct recognition factor, IMR that is specific for insertion/deletion mismatches.  相似文献   

18.
Metabolites of vinyl chloride react with cytosine in DNA to form 3,N(4)-ethenocytosine. Recent studies suggest that ethenocytosine is repaired by the base excision repair pathway with the ethenobase being removed by thymine-DNA glycosylase. Here single turnover kinetics have been used to compare the excision of ethenocytosine by thymine-DNA glycosylase with the excision of thymine. The effect of flanking DNA sequence on the excision of ethenocytosine was also investigated. The 34-bp duplexes studied here fall into three categories. Ethenocytosine base-paired with guanine within a CpG site (i.e. CpG.(epsilon)C-DNA) was by far the best substrate having a specificity constant (k(2)/K(d)) of 25.1 x 10(6) m(-1) s(-1). The next best substrates were DNA duplexes containing TpG.(epsilon)C, GpG.(epsilon)C, and CpG.T. These had specificity constants 45-130 times smaller than CpG.(epsilon)C-DNA. The worst substrates were DNA duplexes containing ApG.(epsilon)C and TpG.T, which had specificity constants, respectively, 1,600 and 7,400 times lower than CpG.(epsilon)C-DNA. DNA containing ethenocytosine was bound much more tightly than DNA containing a G.T mismatch. This is probably because thymine-DNA glycosylase can flip out ethenocytosine from a G.(epsilon)C base pair more easily than it can flip out thymine from a G.T mismatch. Because thymine-DNA glycosylase has a larger specificity constant for the removal of ethenocytosine, it has been suggested its primary purpose is to deal with ethenocytosine. However, these results showing that thymine-DNA glycosylase has a strong sequence preference for CpG sites in the excision of both thymine and ethenocytosine suggest that the main role of thymine-DNA glycosylase in vivo is the removal of thymine produced by deamination of 5-methylcytosine at CpG sites.  相似文献   

19.
Fapy.dA is produced in DNA as a result of oxidative stress. Recently, this lesion and its C-nucleoside analogues were incorporated in chemically synthesized oligonucleotides at defined sites. The interaction of DNA containing Fapy.dA or nonhydrolyzable analogues with Fpg and MutY is described. Fpg efficiently excises Fapy.dA (K(m) = 1.2 nM, k(cat) = 0.12 min(-1)) opposite T. The lesion is removed as efficiently from duplexes containing Fapy.dA:dA or Fapy.dA:dG base pairs. Multiple turnovers are observed for the repair of Fapy.dA mispairs in a short period of time, indicating that the enzyme does not remain bound to the product duplex. MutY does not incise dA from a duplex containing this nucleotide opposite Fapy.dA, nor does it exhibit an increased level of binding compared to DNA composed solely of native base pairs. MutY also does not incise Fapy.dA when the lesion is opposite dG. These data suggest that Fapy.dA could be deleterious to the genome. Fpg strongly binds duplexes containing the beta-C-nucleoside analogue of Fapy.dA (beta-C-Fapy.dA) opposite all native nucleotides (K(D) < 27 nM), as well as the alpha-C-nucleoside (alpha-C-Fapy.dA) opposite dC (K(D) = 7.1 +/- 1.5 nM). A duplex containing a beta-C-Fapy.dA:T base pair is an effective inhibitor (K(I) = 3.5 +/- 0.3 nM) of repair of Fapy.dA by Fpg, suggesting the C-nucleoside may have useful therapeutic properties.  相似文献   

20.
Oligodeoxyribonucleotides containing N4-methoxycytosine (mo4C), N4-methoxy-5-methylcytosine (mo4m5C) and other base-analogues were synthesised and used to compare the stabilities of duplexes containing mo4C.A and mo4C.G base pairs with those containing normal and mismatch pairs. The Tm values and other thermodynamic parameters are recorded. The otherwise identical duplexes containing a mo4C.A and a mo4C.G base pair have closely similar stabilities to each other and to the corresponding duplexes containing normal base pairs, considerably greater than the stabilities of those containing mismatch pairs. Corresponding observations are recorded in dot-blot experiments using M13 cloned DNA carrying an insert complementary to the oligonucleotides; approximate Td values are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号