首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parvovirus replication.   总被引:40,自引:1,他引:39       下载免费PDF全文
The members of the family Parvoviridae are among the smallest of the DNA viruses, with a linear single-stranded genome of about 5 kilobases. Currently the family is divided into three genera, two of which contain viruses of vertebrates and a third containing insect viruses. This review concentrates on the vertebrate viruses, with emphasis on recent advances in our insights into the molecular biology of viral replication. Traditionally the vertebrate viruses have been distinguished by the presence or absence of a requirement for a coinfection with a helper virus before productive infection can occur, hence the notion that the dependoviruses (adeno-associated viruses [AAV]) are defective. Recent data would suggest that not only is there a great deal of structural and genetic organizational similarity between the two types of vertebrate viruses, but also there is significant similarity in the molecular biology of productive replication. What differs is the physiological condition of the host cell that renders it permissive. Healthy dividing cells are permissive for productive replication by autonomous parvoviruses; such cells result in latent infection by dependoviruses. For a cell to become permissive for productive AAV replication, it must have been exposed to toxic conditions which activate a latent AAV genome. Such conditions can be caused by helper-virus infection or exposure to physical (UV light) or chemical (some carcinogens) agents. In this paper the molecular biology of replication is reviewed, with special emphasis on the role of the host and the consequences of viral infection for the host.  相似文献   

2.
The members of the family Parvoviridae are among the smallest of the DNA viruses, with a linear single-stranded genome of about 5 kilobases. Currently the family is divided into three genera, two of which contain viruses of vertebrates and a third containing insect viruses. This review concentrates on the vertebrate viruses, with emphasis on recent advances in our insights into the molecular biology of viral replication. Traditionally the vertebrate viruses have been distinguished by the presence or absence of a requirement for a coinfection with a helper virus before productive infection can occur, hence the notion that the dependoviruses (adeno-associated viruses [AAV]) are defective. Recent data would suggest that not only is there a great deal of structural and genetic organizational similarity between the two types of vertebrate viruses, but also there is significant similarity in the molecular biology of productive replication. What differs is the physiological condition of the host cell that renders it permissive. Healthy dividing cells are permissive for productive replication by autonomous parvoviruses; such cells result in latent infection by dependoviruses. For a cell to become permissive for productive AAV replication, it must have been exposed to toxic conditions which activate a latent AAV genome. Such conditions can be caused by helper-virus infection or exposure to physical (UV light) or chemical (some carcinogens) agents. In this paper the molecular biology of replication is reviewed, with special emphasis on the role of the host and the consequences of viral infection for the host.  相似文献   

3.
Positive-strand RNA [(+)RNA] viruses are responsible for numerous human, animal, and plant diseases. Because of the limiting coding capacity of (+)RNA viruses, their replication requires a complex orchestration of interactions between the viral genome, viral proteins and exploited host factors. To replicate their genomic RNAs, (+)RNA viruses induce membrane rearrangements that create membrane-linked RNA replication compartments. Along with substantial advances on the ultrastructure of the membrane-bound RNA replication compartments, recent results have shed light into the role that host factors play in rearranging these membranes. This review focuses on recent insights that have driven a new understanding of the role that the membrane-shaping host reticulon homology domain proteins (RHPs) play in facilitating the replication of various (+)RNA viruses.  相似文献   

4.
The mechanism(s) by which nonenveloped viruses enter host cells is poorly understood. The recent identification of cell-surface alpha(v) integrins as receptors for adenovirus internalization has shed much light on this process. In addition, analysis of alpha(v) integrins as internalization receptors for adenovirus has provided further insights into the biology of integrins.  相似文献   

5.
Morikawa Y 《Uirusu》2006,56(1):9-16
Yeast is often considered to be a model eukaryotic organism, in a manner analogous to E. coli as a model prokaryotic organism. Yeast has been extensively characterized and the genomes completely sequenced. Despite the small genome size, yeast displays most of features of higher eukaryotes. The facts that most of cellular machinery is conserved among different eukaryotes and that the powerful technologies of genetics and molecular biology are available have made yeast model eukaryotic cells in biological and biomedical sciences including virology. Cumulative data indicate that yeast can be a host for animal viruses. I briefly describe yeast gene expression and review viral replication in yeast. Great discovery include complete replication of animal viruses and production of virus-like particle vaccines in yeast. Current studies on yeast focus on identification of host factors and machinery used for viral replication. The studies are based on traditional yeast genetics and genome-wide identification using a complete set of yeast deletion strains.  相似文献   

6.
Positive-sense RNA ((+)RNA) viruses such as hepatitis C virus exploit host cells by subverting host proteins, remodelling subcellular membranes, co-opting and modulating protein and ribonucleoprotein complexes, and altering cellular metabolic pathways during infection. To facilitate RNA replication, (+)RNA viruses interact with numerous host molecules through protein-protein, RNA-protein and protein-lipid interactions. These interactions lead to the formation of viral replication complexes, which produce new viral RNA progeny in host cells. This Review presents the recent progress that has been made in understanding the role of co-opted host proteins and membranes during (+)RNA virus replication, and discusses common themes employed by different viruses.  相似文献   

7.
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.The dependence of viruses on the host translation system imposes constraints that are central to virus biology and have led to specialized mechanisms and intricate regulatory interactions. Failure to translate viral mRNAs and to modulate host mRNA translation would have catastrophic effects on virus replication, spread, and evolution. Accordingly, a wide assortment of virus-encoded functions is dedicated to commandeering and controlling the cellular translation apparatus. Viral strategies to dominate the host translation machinery target the initiation, elongation, and termination steps and include mechanisms ranging from the manipulation of key eukaryotic translation factors to the evolution of specialized cis-acting elements that recruit ribosomes or modify genome-coding capacity. Because many of these strategies have likely been pirated from their hosts and because virus genetic systems can be manipulated with relative ease, the study of viruses has been a preeminent source of information on the mechanism and regulation of the protein synthesis machinery. In this article, we focus on select viruses that infect mammalian or plant cells and review the mechanisms they use to exploit and control the cellular protein synthesis machinery.  相似文献   

8.
9.
外泌体是一类小型的细胞外囊泡,可以包裹蛋白质、核酸等生物活性分子随体液循环到达机体各处,具有广泛的信息传递作用。研究发现,外泌体在病毒感染宿主的过程中也扮演着重要的角色。病毒需要在宿主细胞内完成复制周期并释放子代病毒,而这一过程与外泌体的产生及分泌途径有共通的部分。一方面,病毒可以"挟持"外泌体并将自身成分装入其中,逃避宿主的免疫应答,促进其在细胞间的传播。另一方面,宿主细胞也可利用外泌体传递抗病毒因子以抑制病毒感染。文中旨在从病毒与宿主两方面阐述外泌体在病毒感染宿主过程中的作用,以期为该领域的研究提供新的思路。  相似文献   

10.
Rates of evolutionary change in viruses: patterns and determinants   总被引:1,自引:0,他引:1  
Understanding the factors that determine the rate at which genomes generate and fix mutations provides important insights into key evolutionary mechanisms. We review our current knowledge of the rates of mutation and substitution, as well as their determinants, in RNA viruses, DNA viruses and retroviruses. We show that the high rate of nucleotide substitution in RNA viruses is matched by some DNA viruses, suggesting that evolutionary rates in viruses are explained by diverse aspects of viral biology, such as genomic architecture and replication speed, and not simply by polymerase fidelity.  相似文献   

11.
溶瘤病毒是一类天然的或经过基因编辑后能特异性在肿瘤细胞中复制、发挥抗肿瘤效应的病毒。溶瘤病毒的抗肿瘤效应主要通过以下两个方面实现:a. 直接的溶瘤效应,例如诱导肿瘤细胞发生凋亡、促使细胞裂解等;b. 溶瘤病毒作为一种激活免疫的药物,通过诱导机体产生强烈的抗肿瘤免疫,达到清除肿瘤的目的。溶瘤病毒疗法作为免疫疗法的一个重要分支,因其具有肿瘤特异性,便于基因改造等优点,成为该领域的研究热点。截至目前,处在临床实验招募和完成阶段的溶瘤病毒疗法虽然已达100多例,但已批准上市的产品仅有4款。溶瘤疗法应用于肿瘤治疗领域还面临着诸多挑战。因此,系统性回顾溶瘤病毒的改造策略,深入了解溶瘤病毒的生物学过程显得尤为必要。病毒依赖于宿主完成复制、增殖过程,其生物学过程与宿主的代谢状态密切相关。肿瘤的标志性特征为代谢重编程,即肿瘤细胞重新构建代谢网络以满足指数生长和增殖的需求并防止氧化应激的过程。通常包括糖酵解的增强和谷氨酰胺分解,以及线粒体功能和氧化还原稳态的变化。通过靶向宿主代谢重编程增强溶瘤病毒的复制、溶瘤能力是当前极具前景的方向。本文综述溶瘤病毒的临床应用现状及与代谢相关的调控机制,为进一步开发新型溶瘤病毒以及联用方式提供新的思路。  相似文献   

12.
Sato Y  Tsurumi T 《PLoS pathogens》2010,6(12):e1001158
Productive replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. In response to the viral productive replication, host cells attempt to attenuate the S-phase cyclin-dependent kinase (CDK) activities to inhibit viral replication. However, accumulating evidence regarding interactions between viral factors and cellular signaling molecules indicate that viruses utilize them and selectively block the downstream signaling pathways that lead to attenuation of the high S-phase CDK activities required for viral replication. In this review, we describe the sophisticated strategy of Epstein-Barr virus to cancel such "noisy" host defense signals in order to hijack the cellular environment.  相似文献   

13.
Identification and characterization of protein-protein interactions between the host cell and parasites both enhance our understanding of basic cell biology and provide insights into central processes of parasite life cycles. Research on HIV-1 has broadened our knowledge of the various molecular events involved. However, our understanding of how this virus interacts with the host cell at the level of protein-protein interaction is still limited. Through these interactions the virus is able to recruit certain cellular metabolic pathways for its replication. Here we summarize our current knowledge of protein-protein interactions between HIV-1 and host cell factors during viral replication.  相似文献   

14.
Influenza viruses are an important cause of respiratory infection worldwide. In humans, infection with seasonal influenza A virus (IAV) is generally restricted to the respiratory tract where productive infection of airway epithelial cells promotes viral amplification, dissemination, and disease. Alveolar macrophages (MΦ) are also among the first cells to detect and respond to IAV, where they play a pivotal role in mounting effective innate immune responses. In contrast to epithelial cells, IAV infection of MΦ is a “dead end” for most seasonal strains, where replication is abortive and newly synthesised virions are not released. Although the key replicative stages leading to productive IAV infection in epithelial cells are defined, there is limited knowledge about the abortive IAV life cycle in MΦ. In this review, we will explore host factors and viral elements that support the early stages (entry) through to the late stages (viral egress) of IAV replication in epithelial cells. Similarities, differences, and unknowns for each key stage of the IAV replicative cycle in MΦ will then be highlighted. Herein, we provide mechanistic insights into MΦ‐specific control of seasonal IAV replication through abortive infection, which may in turn, contribute to effective host defence.  相似文献   

15.
Viruses depend on host cell resources for replication and access to those resources may be limited to a particular phase of the cell cycle. Thus manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment. For example, viruses capable of infecting nondividing cells induce S phase in order to activate the host DNA replication machinery and provide the nucleotide triphosphates necessary for viral DNA replication (Flemington in J Virol 75:4475-4481, 2001; Sullivan and Pipas in Microbiol Mol Biol Rev 66:179-202, 2002). Viruses have developed several strategies to subvert the cell cycle by association with cyclin and cyclin-dependent kinase complexes and molecules that regulate their activity. Viruses tend to act on cellular proteins involved in a network of interactions in a way that minimal protein-protein interactions lead to a major effect. The complex and interactive nature of intracellular signaling pathways controlling cell division affords many opportunities for virus manipulation strategies. Taking the maxim "Set a thief to catch a thief" as a counter strategy, however, provides us with the very same virus evasion strategies as "ready-made tools" for the development of novel antivirus therapeutics. The most obvious are attenuated virus vaccines with critical evasion genes deleted. Similarly, vaccines against viruses causing cancer are now being successfully developed. Finally, as viruses have been playing chess with our cell biology and immune responses for millions of years, the study of their evasion strategies will also undoubtedly reveal new control mechanisms and their corresponding cellular intracellular signaling pathways.  相似文献   

16.
The plasma membrane is the final barrier that enveloped viruses must cross during their egress from the infected cell. Here, we review recent insights into the cell biology of retroviral assembly and release; these insights have driven a new understanding of the host proteins, such as the ESCRT machinery, that are used by retroviruses to promote their final separation from the host cell. We also review antiviral host factors such as tetherin, which can directly inhibit the release of retroviral particles. These studies have illuminated the role of the lipid bilayer as the unexpected target for virus restriction by the innate immune response.  相似文献   

17.
The synthesis and integration of DNA into the genome of its host cell is a normal step in the replication of the retroviruses. Previous studies have provided details concerning the structure of viral DNA and viral and host integration sites. More recent genetic and biochemical results have expanded our understanding considerably: it should soon be possible to describe the exact viral DNA sequence recognized during the integration reaction for several viruses. In addition, at least one of the viral proteins and enzymatic activities required in the reaction has been identified. Analysis of this apparently efficient and highly specific site-directed recombination event in eukaryotic cells promises to provide insights of both fundamental and practical interest.  相似文献   

18.
Enveloped viruses, which include many medically important viruses such as human immunodeficiency virus, influenza virus and hepatitis C virus, are intracellular parasites that acquire lipid envelopes from their host cells. Success of replication is intimately linked to their ability to hijack host cell mechanisms, particularly those related to membrane dynamics and lipid metabolism. Despite recent progress, our knowledge of lipid mediated virus–host interactions remains highly incomplete. In addition, diverse experimental systems are used to study different stages of virus replication thus complicating comparisons. This review aims to present a unifying view of the widely diverse strategies used by enveloped viruses at distinct stages of their replication cycles.  相似文献   

19.
The replication of HIV‐1, like that of all viruses, is intimately connected with cellular structures and pathways. For many years, bulk biochemical and cell biological methods were the main approaches employed to investigate interactions between HIV‐1 and its host cell. However, during the past decade advancements in fluorescence imaging technologies opened new possibilities for the direct visualization of individual steps occurring throughout the viral replication cycle. Electron microscopy (EM) methods, which have traditionally been employed for the study of viruses, are complemented by fluorescence microscopy (FM) techniques that allow us to follow the dynamics of virus–cell interaction. Subdiffraction fluorescence microscopy, as well as correlative EM/FM approaches, are narrowing the fundamental gap between the high structural resolution provided by EM and the high temporal resolution and throughput accomplished by FM. The application of modern microscopy to the study of HIV‐1–host cell interactions has provided insights into the biology of the virus which could not easily, or not at all, have been gained by other methods. Here, we review how modern fluorescence imaging techniques enhanced our knowledge of the dynamic and structural changes involved in HIV‐1 particle formation.   相似文献   

20.
Viruses are pathogenic agents that can infect all varieties of organisms, including plants, animals, and humans. These microscopic particles are genetically simple as they encode a limited number of proteins that undertake a wide range of functions. While structurally distinct, viruses often share common characteristics that have evolved to aid in their infectious life cycles. A commonly underappreciated characteristic of many deadly viruses is a lipid envelope that surrounds their protein and genetic contents. Notably, the lipid envelope is formed from the host cell the virus infects. Lipid-enveloped viruses comprise a diverse range of pathogenic viruses, which often lead to high fatality rates and many lack effective therapeutics and/or vaccines. This perspective primarily focuses on the negative-sense RNA viruses from the order Mononegavirales, which obtain their lipid envelope from the host plasma membrane. Specifically, the perspective highlights the common themes of host cell lipid and membrane biology necessary for virus replication, assembly, and budding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号