首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor I receptors in retinal rod outer segments   总被引:3,自引:0,他引:3  
We have previously reported that the GDP-bound alpha-subunit of the GTP-binding protein transducin, present in outer segments of retinal rod cells (ROS), serves as a high affinity in vitro substrate (Km = 1 microM) for the insulin receptor kinase. The present study demonstrates that transducin also serves as in vitro substrate for an endogenous IGF-I receptor kinase isolated from ROS membranes. The presence of insulin-like growth factor I (IGF-I) receptors in ROS is evident from the high affinity and specific binding of 125I-IGF-I to ROS membranes (Kd = 3 nM) which contain 110 fmol of IGF-I binding sites/mg of membrane protein. Furthermore, cross-linking of 125I-IGF-I labels the 135-kDa alpha-subunit of this receptor. 125I-Insulin binding capacity to ROS membranes is less than 5% that of IGF-I. The IGF-I-stimulated tyrosine kinase activity in solubilized and partially purified receptors from ROS autophosphorylates its own 95-kDa beta-subunits as well as other substrates like transducin. Insulin, which is 200-fold less potent than IGF-I in competing for 125I-IGF-I binding, is only 5-fold less potent than IGF-I in stimulating the receptor kinase activity. This suggests that insulin is much more potent than IGF-I in coupling ligand binding with kinase activation. The previously reported presence of IGF-I in the vitreous, together with our present studies, strongly suggest that the IGF-I receptor kinase, through phosphorylation of endogenous proteins like transducin, could play a role in mediating transmembrane signal transduction in ROS.  相似文献   

2.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

4.
Starting from the finding that, for neuronal cells, the nuclear-membrane-associated protein kinase C (PKC) is the so-called 'membrane inserted', constitutively active form, we attempted to identify substrates of this nuclear PKC. For this purpose, nuclear membranes and other subcellular fractions were prepared from bovine brain, and in-vitro phosphorylation was performed. Several nuclear membrane proteins were found, the phosphorylation of which was inhibited by specific PKC inhibitors and effectively catalyzed by added PKC. Combining the methods of two-dimensional gel electrophoresis, in-situ digestion, reverse-phase HPLC and microsequencing, two of these nuclear PKC substrates were identified; the known PKC substrate Lamin B2, which serves as a control of the approach and the nucleolar protein B23. Our data suggest, that, for B23, Ser225 is a site of phosphorylation by PKC.  相似文献   

5.
Kinetics of phosphorylation of Na+/K(+)-ATPase by protein kinase C   总被引:5,自引:0,他引:5  
The kinetics of phosphorylation of an integral membrane enzyme, Na+/K(+)-ATPase, by calcium- and phospholipid-dependent protein kinase C (PKC) were characterized in vitro. The phosphorylation by PKC occurred on the catalytic alpha-subunit of Na+/K(+)-ATPase in preparations of purified enzyme from dog kidney and duck salt-gland and in preparations of duck salt-gland microsomes. The phosphorylation required calcium (Ka approximately 1.0 microM) and was stimulated by tumor-promoting phorbol ester (12-O-tetradecanoylphorbol 13-acetate) in the presence of a low concentration of calcium (0.1 microM). PKC phosphorylation of Na+/K(+)-ATPase was rapid and plateaued within 30 min. The apparent Km of PKC for Na+/K(+)-ATPase as a substrate was 0.5 microM for dog kidney enzyme and 0.3 microM for duck salt-gland enzyme. Apparent substrate inhibition of PKC activity was observed at concentrations of purified salt-gland Na+/K(+)-ATPase greater than 1.0 microM. Phosphorylation of purified kidney and salt-gland Na+/K+ ATPases occurred at both serine and threonine residues. The 32P-phosphopeptide pattern on 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis after hydroxylamine cleavage of pure 32P-phosphorylated alpha subunit was the same for the two sources of enzyme, which suggests that the phosphorylation sites are similar. The results indicate that Na+/K(+)-ATPase may serve as a substrate for PKC phosphorylation in intact cells and that the Na+/K(+)-ATPase could be a useful in vitro model substrate for PKC interaction with integral membrane proteins.  相似文献   

6.
Voltage-dependent L-type calcium (Ca) channels are heteromultimeric proteins that are regulated through phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrated that the beta 2 subunit was a substrate for PKA in intact cardiac myocytes through back-phosphorylation experiments. In addition, a heterologously expressed rat beta 2a subunit was phosphorylated at two sites in vitro by purified PKA. This beta 2a subunit contains two potential consensus sites for PKA-mediated phosphorylation at Thr164 and Ser591. However, upon mutation of both of these residues to alanines, the beta 2a subunit remained a good substrate for PKA. The actual sites of phosphorylation on the beta 2a subunit were identified by phosphopeptide mapping and microsequencing. Phosphopeptide maps of a bacterially expressed beta 2a subunit demonstrated that this subunit was phosphorylated similarly to the beta 2 subunit isolated from heart tissue and that the phosphorylation sites were contained in the unique C-terminal region. Microsequencing identified three serine residues, each of which conformed to loose consensus sites for PKA-mediated phosphorylation. Mutation of these residues to alanines resulted in the loss of the PKA-mediated phosphorylation of the beta 2a subunit. The results suggest that phosphorylation of the beta 2a subunit by PKA occurs at three loose consensus sites for PKA in the C-terminus and not at either of the two strong consensus sites for PKA. The results also highlight the danger of assuming that consensus sites represent actual sites of phosphorylation. The actual sites of PKA-mediated phosphorylation are conserved in most beta 2 subunit isoforms and thus represent potential sites for regulation of channel activity. The sites phosphorylated by PKA are not substrates for protein kinase C (PKC), as the mutated beta 2 subunits lacking PKA sites remained good substrates for PKC.  相似文献   

7.
The promyelocytic leukemia (HL60) cell line differentiates into monocyte-like cells after treatment with phorbol dibutyrate (PBt2). In contrast, bryostatin 1 (bryo), a structurally distinct protein kinase C (PKC) activator, does not induce differentiation and blocks the cytostatic effect of PBt2. The divergent responses to these agents correlate with activation of a PKC-like activity at the nucleus in response to bryo but not PBt2 (Fields, A. P., Pettit, G. R., and May, W.S. (1988) J. Biol. Chem. 263, 8253-8260). In the present study, this nuclear PKC-like activity (termed PKCn) was isolated from HL60 cells and shown to phosphorylate its known nuclear substrate, lamin B. PKCn-mediated phosphorylation of nuclear envelope-associated lamin B in vitro is calcium-dependent and is stimulated by bryo and 1,2-dioctanoylglycerol (DiC8), but not PBt2. In contrast, PKCn-mediated phosphorylation of histone IIIS is stimulated equally by all three activators. PKCn mediates calcium- and phosphatidylserine-dependent phosphorylation of both histone IIIS and partially purified lamin B. PKCn activity can be inhibited by an anti-PKC monoclonal antibody which specifically inhibits PKC. Isotype-specific PKC antibodies identify PKCn as beta II-PKC. Immunoblot analysis indicates that HL60 cells express both alpha- and beta II-PKC but no beta I- or gamma-PKC. Treatment of intact cells with bryo for 30 min leads to complete translocation of both alpha- and beta II-PKC from the cytosol to the membrane fractions. Approximately 8-10% of the total beta II-PKC (and less than 0.3% of the alpha-PKC) is found associated with the nuclear membrane of bryo-treated cells. In contrast, PBt2 treatment leads to complete translocation of alpha-PKC, but only partial translocation of beta II-PKC to the plasma membrane fraction. Neither PKC isotype is found associated with the nuclear membrane of PBt2-treated cells. These data demonstrate that alpha- and beta II-PKC differ with respect to activator responsiveness, intracellular distribution, and substrate specificity and indicate that their selective activation at distinct intracellular sites, including the nucleus, can have a dramatic effect on resulting cellular responses.  相似文献   

8.
In human neutrophils stimulated with phorbol myristate acetate (PMA) or with the chemotactic factor N-formyl-methionyl-leucyl-phenylalanine (fMLF) a number of proteins are phosphorylated, including proteins recovered in the membrane fraction corresponding to molecular masses of 130, 78, 46, 40, and 34 kDa and proteins recovered in the cytosol fraction corresponding to molecular masses of 65, 55, 48, 38, 36, 30, and 22 kDa. Phosphorylation of the membrane proteins was fourfold greater in cells stimulated with PMA, as compared to cells stimulated with fMLF, whereas both activators induced similar phosphorylation of proteins recovered in the cytosol fraction. Phosphorylation of membrane proteins appeared to be mediated by native protein kinase C (PKC) translocated from the cytosol to the plasma membrane. Thus phosphate incorporation was inhibited by retinal and a similar pattern of incorporation was reproduced in a reconstituted system composed of isolated cell membranes and purified PKC. Phosphorylation of cytosol proteins, on the other hand, appeared to be mediated by the proteolytically modified form of PKC. In this case, phosphate incorporation was inhibited by leupeptin, which prevents the conversion of native PKC to the proteolytically modified form, The phosphorylation pattern was reproduced when isolated cytosol fractions were incubated with the proteolytically modified form of the enzyme but not with the native PKC. These results demonstrate that responses to stimuli such as PMA or fMLF are mediated by different forms of PKC and that the proteolytically modified form is responsible for the major responses elicited by fMLF.  相似文献   

9.
PKC isoform βII modulates translation and can be recruited on ribosomes via its scaffold RACK1 (receptor for activated protein kinase C 1), which resides on the 40S ribosomal subunit. However, whether a PKC activity exists on the ribosome is not yet demonstrated. We purified native ribosomes by two different techniques, which avoid stripping of initiation factors and other associated proteins. In both cases, purified ribosomes are able to phosphorylate a specific PKC substrate, MARCKS (Myristoylated Alanine-Rich C-Kinase Substrate). MARCKS phosphorylation is switched on by treatment with PKC agonist PMA (Phorbol 12-Myristate 13-Acetate). Consistently, the broad PKC inhibitor BMI (Bisindolyl Maleimide I) abrogates MARCKS phosphorylation. These data show that native ribosomes host active PKC and hence allow the phosphorylation of ribosome-associated substrates like initiation factors and mRNA binding proteins.  相似文献   

10.
Using truncated or mutated alphaIIb integrin cytoplasmic domains fused to the alphaV extracellular domain and expressed with the beta3 integrin subunit, we demonstrate that the double mutation of proline residues 998 and 999 to alanine (PP998/999AA), previously shown to disturb the C-terminal conformation of the alphaIIb integrin cytoplasmic domain, prevents tyrosine phosphorylation of beta3 integrin induced by Arg-Gly-Asp peptide ligation. This mutation also inhibits integrin mediated actin assembly and cell adhesion to vitronectin. In contrast, progressive truncation of the alphaIIb-subunit cytoplasmic domain did not reproduce these effects. Interestingly, the PP998/999AA mutations of alphaIIb did not affect beta3 tyrosine phosphorylation, cell adhesion, or actin polymerization induced by manganese. Exogenous addition of manganese was sufficient to rescue beta3 phosphorylation, cell adhesion, and actin assembly in cells expressing the PP998/999AA mutation when presented with a vitronectin substrate. Further, induction of the high affinity conformation of this mutant beta3 integrin by incubation with either Arg-Gly-Asp peptide or exogenous manganese was equivalent. These results suggest that the extracellular structure of beta3 integrins in the high affinity conformation is not directly related to the structure of the cytoplasmic face of the integrin. Moreover, the requirement for beta3 phosphorylation is demonstrated without mutation of the beta3 subunit. In support of our previous hypothesis of a role for beta3 phosphorylation in adhesion, these studies demonstrate a strong correlation between beta3 tyrosine phosphorylation and assembly of a cytoskeleton competent to support firm cell adhesion.  相似文献   

11.
Resveratrol, a polyphenolic natural product abundantly present in grape skins, is a candidate cancer chemopreventive agent that antagonizes each stage of carcinogenesis and inhibits protein kinase C (PKC), a key mediator of tumor promotion. While resveratrol has been shown to antagonize both isolated and cellular forms of PKC, the weak inhibitory potency observed against isolated PKC cannot account for the reported efficacy of the polyphenol against PKC in cells. In this report, we analyze the mechanism of PKC inhibition by resveratrol. Our results indicate that resveratrol has a broad range of inhibitory potencies against purified PKC that depend on the nature of the substrate and the cofactor dependence of the phosphotransferase reaction. Resveratrol weakly inhibited the Ca2+/phosphatidylserine-stimulated activity of a purified rat brain PKC isozyme mixture (IC(50) = 90 microM) by competition with ATP (K(i) = 55 microM). Consistent with the kinetic evidence for a catalytic domain-directed mechanism, resveratrol inhibited the lipid-dependent activity of PKC isozymes with divergent regulatory domains similarly, and it was even more effective in inhibiting a cofactor-independent catalytic domain fragment (CDF) of PKC generated by limited proteolysis. This suggested that regulatory features of PKC might impede resveratrol inhibition of the enzyme. To explore this, we examined the effects of resveratrol on PKC-catalyzed phosphorylation of the cofactor-independent substrate protamine sulfate, which is a polybasic protein that activates PKC by a novel mechanism. Resveratrol potently inhibited protamine sulfate phosphorylation (IC(50) = 10 microM) by a mechanism that entailed antagonism of the activation of PKC by protamine sulfate and did not involve competition with either substrate. On the basis of the presence of PKC isozymes at subcellular sites rich in polybasic proteins, it has been proposed that certain endogenous polybasic PKC substrates may activate PKC in cells by the same mechanism as protamine sulfate. Our results suggest that antagonism by resveratrol of the phosphorylation of cellular PKC substrates that resemble protamine sulfate in their interactions with PKC may contribute to the efficacy of resveratrol against PKC in cells.  相似文献   

12.
Here we demonstrate that type I protein kinase A is redoxactive, forming an interprotein disulfide bond between its two regulatory RI subunits in response to cellular hydrogen peroxide. This oxidative disulfide formation causes a subcellular translocation and activation of the kinase, resulting in phosphorylation of established substrate proteins. The translocation is mediated at least in part by the oxidized form of the kinase having an enhanced affinity for alpha-myosin heavy chain, which serves as a protein kinase A (PKA) anchor protein and localizes the PKA to its myofilament substrates troponin I and myosin binding protein C. The functional consequence of these events in cardiac myocytes is that hydrogen peroxide increases contractility independently of beta-adrenergic stimulation and elevations of cAMP. The oxidant-induced phosphorylation of substrate proteins and increased contractility is blocked by the kinase inhibitor H89, indicating that these events involve PKA activation. In essence, type I PKA contains protein thiols that operate as redox sensors, and their oxidation by hydrogen peroxide directly activates the kinase.  相似文献   

13.
Rod outer segments (ROS) exhibit high acyltransferase (AT) activity, the preferred substrate of which being lysophosphatidylcholine. To study factors possibly regulating ROS AT activity purified ROS membranes were assayed under conditions under which protein kinase C (PKC), cAMP-dependent protein kinase (PKA), and phosphatases were stimulated or inhibited. PKC activation produced a significant increase in the acylation of phosphatidylethanolamine (PE) and phosphatidylinositol (PI) with oleate, it inhibited phosphatidylcholine (PC) acylation, and phosphatidylserine (PS) and phosphatidic acid (PA) acylation remained unchanged. ROS PKA activation resulted in increased oleate incorporation into PS and PI while the acylation of PC, PE, and PA remained unchanged. Inhibition of ROS PKC or PKA produced, as a general trait, inverse effects with respect to those observed under kinase-stimulatory conditions. ROS phosphatase 2A was inhibited by using okadaic acid, and the changes observed in AT activity are described. These findings suggest that changes in ROS protein phosphorylation produce specific changes in AT activity depending on the phospholipid substrate. The effect of light on AT activity in ROS membranes was also studied and it is reported that acylation in these membranes remains unchanged independent of the illumination condition used.  相似文献   

14.
15.
The regulation of kinases by scaffolding proteins greatly contributes to the fidelity of signal transduction. In the present study, we explored an interaction between the ubiquitous enzyme PKC (protein kinase C) and the scaffolding protein AKAP7 (A-kinase-anchoring protein 7). Using protein biochemistry and surface plasmon resonance approaches, we demonstrate that both AKAP7γ and AKAP7α are capable of high-affinity interactions with multiple isoenzymes of PKC. Furthermore, this interaction is achieved via multi-site binding on both proteins. FRET (fluorescence resonance energy transfer) analysis using a PKC activity reporter suggests that anchoring of the kinase within AKAP7 complexes enhances the phosphorylation of substrate proteins. Finally, we determined using FRAP (fluorescence recovery after photobleaching) and virtual modelling that AKAP7 restricts the mobility of PKC within cells by tethering it to subcellular compartments. Collectively, the results of the present study suggests that AKAP7 could play an integral role in dictating PKC localization and function in tissues where the two proteins are co-expressed.  相似文献   

16.
Protein kinase C (PKC)-mediated phosphorylation of chromatin-associated proteins was studied in vitro. HL-60 and HeLa nuclear proteins were notably unresponsive to exogenously added brain PKC. In contrast, 3T3 fibroblasts and lymphocytes from primary cultures exhibited PKC-dependent phosphorylation of chromatin-associated proteins when chromatin was induced to expand. Unexpanded nuclei in all cell lines were unresponsive. Responsiveness was particularly obvious in the decondensed chromatin of primary lymphocytes, where a large number of proteins were phosphorylated in response to exogenous PKC. DNAase-I and micrococcal nuclease strongly modulated these phosphorylation patterns indicating that the substrates were DNA-associated. It was concluded that although substrate conformation, i.e. condensation state, was the primary determining factor in control of PKC-dependent nuclear protein phosphorylation, different cell lines greatly differ in their overall responsiveness to exogenous PKC.  相似文献   

17.
By using the purified rat liver protein for reference in electrophoresis and peptide mapping experiments, I have identified the beta subunit of mitochondrial F1-ATPase and its cytoplasmic precursor in two-dimensional gel patterns of proteins from S49 mouse lymphoma cells. The beta subunit precursor is a substrate for cAMP-dependent phosphorylation during its synthesis. Normally, both nonphosphorylated and phosphorylated forms of beta subunit precursor are processed rapidly to the smaller, more acidic forms of mature beta subunit. When processing is inhibited with valinomycin, both nonphosphorylated and phosphorylated forms of beta subunit precursor are stabilized. Nonphosphorylated beta subunit is one of the most stable of cellular proteins, but the phosphorylated form is eliminated within minutes of processing. This suggests that phosphorylated beta subunit is recognized as aberrant and excluded from assembly into the ATPase complex. These results argue that cAMP-dependent phosphorylation of the beta subunit precursor is a physiological mistake that is remedied after mitochondrial import and processing.  相似文献   

18.
We have investigated the rapid phosphorylation of proteins in B-lymphocytes incubated with the tumour-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), anti-Ig and combinations of TPA and the Ca2+ ionophore ionomycin. Two-dimensional electrophoretic analysis was used to identify the proteins phosphorylated in cells preincubated with [32P]Pi. TPA induced a characteristic pattern of labelled proteins, four of which (pp85, pp76, pp66 and pp63) showed a dose-dependent incorporation of 32P on serine residues. The phosphorylation of pp63 and pp66, in particular, correlated with the mitogenic dose-response curve. Addition of the Ca2+ ionophore ionomycin to B-cells also stimulated a characteristic incorporation of 32P into proteins, which included pp63 and pp66. With combined doses of TPA and ionomycin, these two proteins show an enhanced phosphorylation, which correlated well with the synergistic enhancement of proliferation shown by this combination of agents. Protein kinase C (PKC) was partially purified from B-cells and separated into alpha and beta subtypes. The activation of both PKCs was assessed with increasing doses of TPA and concentrations of Ca2+ of 0.1 microM and 2 microM. For both forms of PKC, in particular the beta form, higher concentrations of Ca2+ shifted the dose-response curve for TPA to the left and increased the maximum activation. Anti-Ig, which stimulated B-cells by cross-linking surface immunoglobulin and causing hydrolysis of PtdIns(4,5)P2, also caused increased phosphorylation of several proteins, which again included pp63 and pp66. These data suggest that PKC, particularly the beta form, is involved in the early part of the proliferation cascade for human B-lymphocytes. It is most probably activated in a synergistic manner by the increased Ca2+ and diacylglycerol levels which result from the earlier hydrolysis of PtdIns(4,5)P2.  相似文献   

19.
Protein kinase C (PKC), a protein phosphorylating enzyme, is characterized by its need for an acidic phospholipid and for activators such as Ca2+ and diacylglycerol. The substrate commonly used in experiments with PKC is a basic protein, histone III-S, which needs the activators mentioned. However, protamine, a natural basic substrate for PKC, does not require the presence of cofactor/activator. We report here that protamine can induce the autophosphorylation of PKC in the absence of any PKC-cofactor or activator; this may represent a possible mechanism of cofactor-independent phosphorylation of this protein. It was investigated if protamine itself can act as a PKC-activator and stimulate histone phosphorylation in the manner of Ca2+ and phospholipids. Experiments however showed that protamine is not a general effector of PKC. On the contrary, histone stimulated PKC-mediated protamine phosphorylation and protamine-induced PKC-autophosphorylation. Histone alone did not induce PKC-autophosphorylation. Kinetic studies suggest that histone increases the maximal velocity (Vmax) of protamine kinase activity of PKC without affecting the affinity (Km). Other polycationic proteins such as polyarginine serine and polyarginine tyrosine were not found to influence PKC-mediated protamine phosphorylation, indicating that the observed effects are specific to histone, and are not general for all polycationic proteins. These results suggest that histone can modulate the protamine kinase activity of PKC by stimulating protamine-induced PKC-autophosphorylation.  相似文献   

20.
Echistatin, a 5000-Da disintegrin, is a strong competitive inhibitor of platelet alpha(IIb)beta(3) binding to fibrinogen. In addition to its antiplatelet activity, echistatin also exhibits activating properties by inducing a switch of alpha(IIb)beta(3) conformation towards an active state. However, soluble echistatin, which is a monomeric ligand, provides only receptor affinity modulation, but it is unable to activate integrin-dependent intracellular signals. Since proteins may exhibit a multivalent functionality as a result of their absorption to a substrate, in this study we evaluated whether immobilised echistatin is able to stimulate platelet adhesion and signalling. The immobilisation process led to an increase of echistatin affinity for integrin(s) expressed on resting platelets. Unlike the soluble form, immobilised echistatin bound at comparable extent either unstimulated or ADP-activated platelets. Furthermore, echistatin presented in this manner was effective in stimulating integrin-dependent protein tyrosine phosphorylation. Platelets adhering to immobilised echistatin showed a pattern of total tyrosine phosphorylated proteins resembling that of fibrinogen-attached platelets. In particular, solid-phase echistatin induced a strong phosphorylation of tyrosine kinases pp72(syk) and pp125(FAK). Inhibitors of platelet signalling, such as apyrase, prostaglandin E(1), cytochalasin D and bisindolylmaleimide, while not affecting platelet adhesion to immobilised echistatin, abolished pp125(FAK) phosphorylation. This suggests that signals activating protein kinase C function, dense granule secretion and cytoskeleton assembly might be involved in echistatin-induced pp125(FAK) phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号