首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Abstract: The putative role of glutamine, exported from leaves to roots, as a negative feedback signal for nitrate uptake was investigated in Zea mays L. seedlings. Glutamine (Gln) was supplied by immersion of the tip-cut leaves in a concentrated solution. Nitrate (NO3) uptake was measured by its depletion in amino acid-free medium. The treatment with Gln resulted in a strong inhibition of nitrate uptake rate, accompanied by a significant enrichment of amino compounds in root tissue. The effect of N-availability on NO3 uptake was determined in split-root cultures. The plants were subjected to complete or localized N supply. Inducible NO3 uptake systems were also induced in N-deprived roots when the opposite side of the root system was supplied with KNO3. The inhibitory effect of Gln was unaffected by localized N supply on one side of the split-root. The potential role of Gln in the shoot-to-root control of NO3 uptake is discussed.  相似文献   

2.
Nitrate assimilation and nitrogen circulation in Austrian pine   总被引:2,自引:0,他引:2  
Nitrate uptake, reduction and translocation were examined in 5-week-old Austrian pines ( Pinus nigra Arnold var. nigricans Host.) during exposure to 5 m M NaNO3. The rate of nitrate uptake was linear during the 7 h light period. 15N-NO3 was detected in all parts of the pine except in the needles. By the 7th hour, 43% of the absorbed nitrate had been reduced, and this increased to 64% by the 24th hour. The major part of the total reduction occurred in the roots at this growth stage. Accumulation of 15N in reduced soluble and insoluble fractions was more prevalent in roots than in shoots. In the needles, the translocated nitrogen was mainly incorporated into the insoluble fraction. It is likely that most of the nitrogen from nitrate was transported from the roots to the aerial organs as organic nitrogen; however part of the upward nitrogen flux took place as nitrate ions.
An experiment in which an exposure for 24 h to 5 m M Na15NO3 was followed by 13 days exposure to Na14NO3 (pulse chase experiment) revealed a half time of about 1 day for depletion of root nitrate. A large part of this depletion was due to the loss of 15N-NO3 to the nutrient solution. The remaining pool of 15N-nitrate was partitioned between a metabolically inactive and an active pool. During the chase period, the simultaneous decrease of 15N-incorporation in the soluble N fraction and increase in the insoluble N fraction in different pine parts, particularly in the needles, suggested that protein synthesis occurred mostly in young tissues of the shoot and was the major sink of the newly absorbed 15N-NO3.  相似文献   

3.
Influx, efflux and translocation of K+(86Rb) were studied in the roots of sunflower seedlings ( Helianthus annuus L. cv. Uniflorus) treated with 0–4.0 m M NO3 during a 9 day growth period or a 24 h pretreatment period. Roots treated with high levels of NO3 absorbed and translocated more K+(86Rb) than seedlings treated with low levels of NO3. The content of K+ in the shoots was, however, higher in seedlings treated with low levels of NO3, indicating a low rate of retranslocation of K+ in those plants. K+(86Rb) efflux was highest into the low-NO3 solutions. All effects on K+(86Rb)-fluxes were more obvious in high-K plants than in low-K plants. The results are discussed in relation to the Dijkshoorn-Ben Zioni hypothesis for K++ NO3-uptake and translocation in plants.  相似文献   

4.
Clones of Rosa damascena Mill. cv. Gloire de Guillan, selected for growth in solid medium containing 56 m M NaClO3, were studied to determine the reason for their resistance to this toxic salt. The cells grew on medium containing nitrate as the only nitrogen source, and they synthesized nitrate reductase (EC 1.6.6.2) in the presence of nitrate. The cells were resistant in the presence of nitrate. However, their resistance was greatly increased by the presence of glutamate in the medium. The cells took up [36Cl]-ClO3- and reduced it to ClO2, but the fraction of ClO3 that they reduced under our experimental conditions was less than that reduced by wild type. The slower production of ClO2 apparently accounted for the resistance of the cells to ClO3. We suggest several possible reasons for the low rate of reduction of ClO3.  相似文献   

5.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 uptake by roots, both uptake of K+ and NO3 and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 and that of K+; an increase in light intensity produced a much greater stimulation of NO3 uptake than of K+ uptake. On the other hand, secretion of NO3 into the xylem was tightly coupled to that of K+, and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2-malate shuttle on the regulation by the shoot of K+ and NO3 secretion in the xylem, which is linked to NO3 uptake, while K+ uptake is independent of this regulation mechanism.  相似文献   

6.
Screening for mutants deficient in the high affinity system of nitrate uptake was performed using mutagenized M2 population of rice ( Oryza sativa , cv. Nipponbare or Kinmaze). For selecting mutants, M2 seedlings were transferred individually to 10 ml solution containing 250 μ M potassium nitrate and 500 μ M calcium sulphate at 20 or 28°C. After 6 or 24 h, nitrate concentration of the solution was determined with a nitrate selective electrode and the seedlings showing impaired nitrate uptake were selected as nitrate uptake deficient variants. Of 74 variants, three were confirmed to be mutants with low nitrate uptake ability in the M3 generation. Potassium uptake ability also decreased in the mutants. Three mutants were divided into two groups based on the analysis of nitrate reductase (NR, EC 1.6.6.1) activity and chlorate resistance. Two, NUE13 and NUE36 , had a lower level of NR activity than the original cultivar and were not resistant to chlorate, while the seedlings of NUE50 had the same level of NR activity as the original cultivar and were more resistant to chlorate than the original cultivar. All mutants were resistant to cesium, a toxic ion analogue for potassium, suggesting that the decreased levels of both nitrate and potassium uptake were coupled to the change of plasma membrane H+-ATPase activity.  相似文献   

7.
The short term effect of NO3 (12 mM) on nitrate reductase (NR. EC 1.6.6.1) activity has been studied in the roots, nodules and leaves of different genotypes of Vicia faba L. at the end of vegetative growth. Root and leaf NR activity responded positively to NO3 while nodule activity, where detected, proved to he strongly inhibited. The withdraw of this NO3 from the solution consistently reduced activity in the roots and leaves but surprising, promoted a significant increase in nodule activity, which matched or surpassed that of control plants On the other hand, nodules developed in the presence of 8 mM NO3 expressed an on average 141% higher level of NR activity than did controls. This effect was observed even in nodules with negligible control activity. In any case, a naturally occurring mutant (VF17) lacking root and nodule NR activity is described. The results indicate that in V. faba. the effects of NO3 and plant genotype on NR activity depended on plant organ and time of NO3 application, hut the distribution of NO3 reduction through the plain was mainly dependent on plant genotype, and to a lesser extent on NO: supply and plant age.  相似文献   

8.
Two cultivars of wheat (Triticum aestivum L. cvs Kadett and WW 20299) were grown for 9 days with 20% relative increase in nutrient supply per day at pH 4.1. Aluminium at 50 μ M retarded the growth of roots more than that of shoots in both cultivars, thus decreasing the root/shoot ratio. The inhibition was largest in WW 20299. With long term Al treatment (9 days), Km for K+(86Rb) influx increased five times in both cultivars and Vmax decreased in WW 20299. Efflux of K+(86Rb) was little affected. When the roots were treated with aluminium for two days, only relative growth rate of roots was retarded, while growth of shoots was unaffected and influx of K+(86Rb) adjusted to the actual K+ demand of the plants. It is concluded that the effects of aluminium on K+ uptake in these wheat cultivars are not primary factors contributing to aluminium sensitivity. However, in soil with Al the demand for a comparatively high concentration of K+ to maintain an adequate K+ uptake rate, in combination with a slow growth rate of the roots, may secondarily lead to K+ deficiency in the plants.  相似文献   

9.
Response of nitrogen metabolism to boron toxicity in tomato plants   总被引:1,自引:0,他引:1  
Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 m m and 2.0 m m B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGRL), concentration of B, nitrate (NO3), ammonium (NH4+), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGRL, organic N, soluble proteins, and NR and NiR activities. The lowest NO3 and NH4+ concentration in leaves was recorded when plants were supplied with 2.0 m m B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO3 reduction and increases NH4+ assimilation in tomato plants.  相似文献   

10.
The relative rates of ammonium and nitrate-N uptake and assimilation by creeping bent ( Agrostis stolonifera ), were investigated for plants grown in soil and supplied with three different ratios of ammonium and nitrate-N. Following two preliminary defoliations, plants were supplied with the equivalent of 150 kg N ha−1, given as 15N-(differentially) labelled NH4+ and NO3-N in three different ratios (20:80, 50:50 and 80:20), followed by sequential destructive harvests of shoots and roots at four points during a 35-d regrowth period. Maximum use of labelled nitrogen and 'exhaustion' of soil mineral nitrogen reserves occurred much earlier when plants were supplied with half or more of their nitrogen as ammonium, than occurred when they were supplied predominately with nitrate-N. The lack of consistency in the patterns of ammonium and nitrate-N absorption, however, implied that the plants had no specific preference for either nitrogen form. Supplying plants with different combinations of ammonium and nitrate produced distinctive differences in plant morphology. In the high nitrate treatment, plants preferentially partitioned resources into shoot and stolon formation, whereas in the high ammonium treatment, resources were preferentially partitioned into root production. These changes in plant morphology might be adaptations to aid species survival in environments associated with a predominance of either nitrogen form.  相似文献   

11.
Net fluxes of NH4+ and NO3 along adventitious roots of rice ( Oryza sativa L.) and the primary seminal root of maize ( Zea mays L.) were investigated under nonperturbing conditions using ion-selective microelectrodes. The roots of rice contained a layer of sclerenchymatous fibres on the external side of the cortex, whereas this structure was absent in maize. Net uptake of NH4+ was faster than that of NO3 at 1 mm behind the apex of both rice and maize roots when these ions were supplied together, each at 0·1 mol m–3. In rice, NH4+ net uptake declined in the more basal regions, whereas NO3 net uptake increased to a maximum at 21 mm behind the apex and then it also declined. Similar patterns of net uptake were observed when NH4+ or NO3 was the sole nitrogen source, although the rates of NO3 net uptake were faster in the absence of NH4+. In contrast to rice, rates of NH4+ and NO3 net uptake in the more basal regions of maize roots were similar to those near the root apex. Hence, the layer of sclerenchymatous fibres may have limited ion absorption in the older regions of rice roots.  相似文献   

12.
The effects of AICI3 on uptake of Ca2+ and phosphate in roots of intact beech ( Fagus sylvatica L. provenance Maramures) plants were studied in nutrient solution and soil solution. Aluminium reduced the concentrations of Ca, Mg and P in plants and increased that of K. In short term experiments, uptake of Ca2+(45Ca) was reduced by exposure of the roots to Al. The effect of aluminium on Ca2+(45Ca) uptake was immediate and primarily of a competitive nature, preventing Ca2+ from being adsorbed. Uptake of 32P-phosphate increased with increasing Al concentration up to 0.1 m M and then decreased at higher Al concentrations. The effect of Al on 32P-phosphate uptake was most pronounced during the first hours of exposure. Growth of plants for 15 days in soil solution, collected from the upper A horizon of a beech forest soil, had no effect on uptake of Ca2+(45Ca) and 32P-phosphate, probably because of a low concentration of labile bound monomeric Al and binding of Al to organic compounds. Soil solution from the deeper B horizon reduced Ca2+(45Ca) uptake and increased 32P-phosphate uptake in a manner similar to that with Altreatment in nutrient solution. It is concluded that in soil solution from the deeper regions of the soil, mineral uptake by roots was affected by Al.  相似文献   

13.
The effect of a day at low irradiance of a maize crop   总被引:2,自引:0,他引:2  
During the growth of maize ( Zea mays L.cv. INRA F7× F2) under constant climatic conditions, the effects of reductions in irradiance simulating a cloudy day were studied. Hourly and daily measurements made in an assimilation chamber (C2 3A) showed important and lasting effects in root activity. After reduction of photosynthesis, it took approximately 2 hours to start a lowering of the uptake of NO3 and NH4+, three hours for K+ and four hours for phosphate. Root respiration started to fall after 3 hours. The level to which these activities were reduced also varied. Phosphate uptake was reduced by a mean of 27%, nitrate uptake by 47%, and K+ uptake by 55% while the root respiration was reduced by 55%. After return to the initial irradiance, root activities took 3 days to recover their initial rates. Shoot respiration was re-established after one day, while the effects on photosynthesis and transpiration were immediate. The delay of the effect of a change of photosynthesis on the activities of the root, indicates the existence of considerable metabolic reserves. Over longer periods, root metabolism depends on photosynthetic assimilates, but in the short term it is much more dependent on the level of metabolic reserves than on the direct flow of photosynthetic translocates.  相似文献   

14.
Iron inefficiency in the maize ( Zea mays L.) mutant ysl is caused by a defect in the uptake system for Fe-phytosiderophores. To characterize this defect further, the uptake kinetics of Fe-phytosiderophores in ysl was compared to the Fe-efficient maize cultivar Alice. Short-term uptake of 59Fe-labeled Fe-deoxymugineic acid (Fe-DMA) was measured over a concentration range of 0.03 to 300 μM. Iron uptake in Fe-deficient plants followed Michaelis-Menten kinetics up to about 30 μM and was linear at higher concentrations, indicating two kinetically distinct components in the uptake of Fe-phytosiderophores. The saturable component had similar Km (∼ 10 μM) in both genotypes. In contrast. Vmax was 5.5 μmol Fe-DMA g−1 dry weight [30 min]−1 in Alice, but only 0.6 μmol Fe-DMA g−1 dry weight [30 min]−1 in ysl. Uptake experiments with double-labeled 59Fe-[14C]DMA suggest that in both cultivars Fe-DMA was taken up by the roots as the intact chelate. The results indicate the existence of a high-affinity and a low-affinity uptake system mediating Fe-phytosiderophore transport across the root plasma membrane in maize. Apparently, the mutation responsible for Fe inefficiency in ysl affected high-affected uptake and led to a decrease in activity and/or number of Fe-phytosiderophore transporters.  相似文献   

15.
The immediate and posteffects of various concentrations of NaNO2 on ion uptake of wheat ( Triticum aestivum L. cv. GK Öthalom) seedlings were studied at different pH values. Without pretreatment, the higher the concentration of NaNO2 the greater was the decrease in uptake of K+ into the roots, both at pH 4 and pH 6. At pH 6 but not at pH 4 the reverse was true when the seedlings were pretreated with NaNO2. Due to the high Na+ content of the roots, an effect of Na+ in this process cannot be excluded. Nitrite was taken up by the roots more rapidly than nitrate. Nitrite at 0.1 m M in the medium induced the development of an uptake system for both NO2 and NO3 in wheat roots. At higher concentrations pretreatment with NO2 decreased NO3 uptake by the roots, but NO3 did not inhibit the uptake of NO2. The toxic effect of NO2 was strongly pH dependent. Lower pH of the external solution led to an increased inhibition by NO2 of both ion uptake and growth of seedlings. The inhibitory effect of NO2 differed considerably for roots and shoots. The roots and especially the root hairs were particularly sensitive to NO2 treatment.  相似文献   

16.
Plants of barley ( Hordeum vulgare L. cv. Salve) were grown with 6.5–35% relative increase of K+ supply per day (RKR) using a special computer-controlled culture unit. After a few days on the culture solution the plants adapted their relative growth rate (RGR) to the rate of nutrient supply. The roots of the plants remained in a low salt status irrespective of the rate of nutrient supply, whereas the concentration of K+ in shoots increased with RKR. Both Vmax and Km for K+(86Rb) influx increased with RKR. It is concluded that with a continuous and stable K+ stress, the K+ uptake system is adjusted to provide an effective K+ uptake at each given RKR. Allosteric regulation of K+ influx does not occur and efflux of K+ is very small.  相似文献   

17.
Blue light-dependent monovalent anion uptake   总被引:1,自引:0,他引:1  
Blue light is one of the most important environmental signals regulating monovalent anion transport in plant cells. In the unicellular freshwater chlorophyte Monoraphidium braunii , blue light is essential for the activation of HCO3, NO3, NO22 and Cl transport systems. These anions are taken up when blue light is present but the uptake ceases when this radiation is suppressed, indicating that blue light is a switch signal for the monovalent anion transport system(s) of this alga. Similar results have been obtained in other green algae and higher plants. The action spectra for the uptake of NO3 and Cl in M. braunii are very similar and resemble the absorption spectra of flavins or a combination of flavins and pterins. It is proposed that both anions share the same transport system(s). The uptake of monovalent anions consists of a cotransport with H+, thus producing alkalinization of the external medium. The time between the onset of blue light and the beginning of alkalinization can be as short as 2 s. Taken together, the results suggest that the photoreceptor mediating the blue light activation of monovalent anion uptake in this green alga is a plasma membrane-bound flavoprotein.  相似文献   

18.
SUMMARY. 1. Time-course measurements of NH4+ and NO3uptake were made on the natural phytoplankton populations in a eutrophic lake at a time when these nutrients were at their lowest annual concentration.
2. Both NH4+ and NO3 uptake was increased at least five-fold during the first 5 min of incubation following near saturating pulses of these nutrients.
3. Elevated uptake was also observed following low level (∼2μg N 1−1) pulses of NH4+ and NO3, but substrate depletion during the first hour of incubation may have been partially responsible for this apparent enhancement.
4. Incorporation of I5N into TCA-insoluble material (protein) following the saturating NH4+ pulse was increased less than total cellular 15N uptake, whereas no elevation of 15N incorporation into protein was observed following a saturating NO3pulse.
5. The percentage of I5N incorporated into protein, with respect to total cellular uptake, was ∼32% and ∼12% for NH4+ and NO3, respectively, following 5 h of incubation.  相似文献   

19.
Abstract. The application of molecular approaches such as mutant analysis and recombinant DNA technology, in conjunction with immunology, are set to revolutionize our understanding of the nitrate assimilation pathway. Mutant analysis has already led to the identification of genetic loci encoding a functional nitrate reduction step and is expected to lead ultimately to the identification of genes encoding nitrate uptake and nitrite reduction. Of particular significance would be identification of genes whose products contribute to regulatory networks controlling nitrogen metabolism. Recombinant DNA techniques are particularly powerful and have already allowed the molecular cloning of the genes encoding the apoprotein of nitrate reductase and nitrite reductase. These successes allow for the first lime the possibility to study directly the role of environmental factors such as type of nitrogen source (NO3 or NH4+) available to the plant, light, temperature water potential and CO2 and O2 tensions on nitrate assimilation gene expression and its regulation at the molecular level. This is an important advance since our current understanding of the regulation of nitrate assimilation is based largely on changes of activity of the component steps. The availability of mutants, cloned genes, and gene transfer systems will permit attempts to manipulate the nitrate assimilation pathway.  相似文献   

20.
The effects of pH on the growth and the K+ (86Rb) uptake and K+ content of excised rice ( Oryza sativa L. cv. Dunghan Shali) and wheat ( Triticum aestivum L. cv. GK Szeged) roots were investigated. Rice roots responded to H+ stress with an increased K+(86Rb) influx and a decreased K+ content, suggesting an increased exchange between the cytoplasmic K+ pool and the external medium. Under the same experimental conditions wheat did not show any anomalous K+(86Rb) influx. Growth of both rice and wheat was relatively insensitive to pH between 4 to 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号