首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redox balances in the metabolism of sugars by yeasts   总被引:9,自引:0,他引:9  
Abstract The central role of the redox couples NAD+/NADH and NADP+/NADPH in the metabolism of sugars by yeasts is discussed in relation to energy metabolism and product formation. Besides their physical compartmentation in cytosol and mitochondria, the two coenzyme systems are separated by chemical compartmentation as a consequence of the absence of transhydrogenase activity. This has considerable consequences for the redox balances of both coenzyme systems and hence for sugar metabolism in yeasts.
As examples, the competition between respiration and fermentation of glucose, the Crabtree effect, the Custers effect, adaptation to anaerobiosis, the activities of the hexose monophosphate pathway, and the fermentation of xylose in yeast are discussed.  相似文献   

2.
The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wickerhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization less than or equal to 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettano-myces claussenii, B. anomalus, K. dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization greater than 3 produced an enzyme(s) that hydrolyzed cellotretose.  相似文献   

3.
The metabolism of pyrimidine compounds by Tetrahymena pyriformis   总被引:1,自引:0,他引:1  
The pyrimidine requirements for growth of T. pyriformis and for reversal of the growth inhibition caused by folate deprivation have been studied. The effects of thymidine and 5-fluorodeoxyuridine have been shown to be quantitatively different from the effects of these compounds on growth and the rate of DNA synthesis in mammalian cells. Labelled nucleosides added to the medium have been found to be converted to the corresponding bases with the exception of deoxycytidine, which is first deaminated to deoxyuridine. As a result no deoxynucleosides other than thymidine specifically label DNA. The results allow deductions to be made concerning the enzymes involved in pyrimidine utilization by this organism. It is suggested that pyrimidine utilization is always channeled through uracil in the case of those compounds that can supply the pyrimidine requirement for growth.  相似文献   

4.
5.
Summary Microcalorimetric experiments on growth ofSaccharomyces under oxygen and nitrogen pressure between 0 and 10 kp/cm2 are described. Within this range there are no alterations of the metabolism by the pressureper se but increased cell volume and a pronounced number of cells are observed. With nitrogen the enthalpy change amounts to a value of 130 cal/g glucose invariable with pressure. For oxygen a maximum heat evolution of 650 cal/g glucose is found in stirred cultures at the minimum pressure of almost 0 kp/cm2. With rising O2 pressure one observes a strong repression of heat flux which drops to a minimum value at 2 kp/cm2. This repression is overcome by substrate concentrations less than 2 mg/ml. In unstirred cultures exposed to oxygen pressure the growth is determined by the geometrical and temporal distribution of cells and oxygen in the vessels. The calorimetric data are discussed in view of the mean volume and the dry weight of the cells.Herrn Prof. Dr. W. Stein zum 60. Geburtstag gewidmet.  相似文献   

6.
Summary The anaerobic growth of the yeast Saccharomyces cerevisiae with six different mono- and disaccharides as energy source was investigated calorimetrically. With mixtures of monosaccharides and disaccharides or disaccharides with each other, biphasic thermograms were obtained. The diauxic growth is discussed in view of constitutive and inducible transport systems and degradation enzymes.  相似文献   

7.
8.
Summary Microcalorimetric experiments on growth and maintenance metabolism ofSaccharomyces strains ranging from haploid to hexaploid are described. During growth, the mean dry weight, the mean volume and the maximum heat flux of the cells are nearly linear functions of ploidy. These parameters are correlated with the cell concentration in such a manner that the weight-specific heat production and the grown biomass are independent of ploidy. For the metabolism of maintenance, two levels of the specific heat flux are found, the lower of which is occupied by the haploids, diploids and triploids. The higher polyploids exhibit the higher level.  相似文献   

9.
Fermentation and aerobic metabolism of cellodextrins by yeasts.   总被引:1,自引:1,他引:0       下载免费PDF全文
The fermentation and aerobic metabolism of cellodextrins by 14 yeast species or strains was monitored. When grown aerobically, Candida wickerhamii, C. guilliermondii, and C. molischiana metabolized cellodextrins of degree of polymerization 3 to 6. C. wickerhamii and C. molischiana also fermented these substrates, while C. guilliermondii fermented only cellodextrins of degree of polymerization less than or equal to 3. Debaryomyces polymorphus, Pichia guilliermondii, Clavispora lusitaniae, and one of two strains of Kluyveromyces lactis metabolized glucose, cellobiose, and cellotriose when grown aerobically. These yeasts also fermented these substrates, except for K. lactis, which fermented only glucose and cellobiose. The remaining species/strains tested, K. lactis, Brettano-myces claussenii, B. anomalus, K. dobzhanskii, Rhodotorula minuta, and Dekkera intermedia, both fermented and aerobically metabolized glucose and cellobiose. Crude enzyme preparations from all 14 yeast species or strains were tested for ability to hydrolyze cellotriose and cellotretose. Most of the yeasts produced an enzyme(s) capable of hydrolyzing cellotriose. However, with two exceptions, R. minuta and P. guilliermondii, only the yeasts that metabolized cellodextrins of degree of polymerization greater than 3 produced an enzyme(s) that hydrolyzed cellotretose.  相似文献   

10.
Technologies for the production of alternative fuels are receiving increased attention owing to concerns over the rising cost of petrol and global warming. One such technology under development is the use of yeasts for the commercial fermentation of xylose to ethanol. Several approaches have been employed to engineer xylose metabolism. These involve modeling, flux analysis, and expression analysis followed by the targeted deletion or altered expression of key genes. Expression analysis is increasingly being used to target rate-limiting steps. Quantitative metabolic models have also proved extremely useful: they can be calculated from stoichiometric balances or inferred from the labeling of intermediate metabolites. The recent determination of the genome sequence for P. stipitis is important, as its genome characteristics and regulatory patterns could serve as guides for further development in this natural xylose-fermenting yeast or in engineered Saccharomyces cerevisiae. Lastly, strain selection through mutagenesis, adaptive evolution or from nature can also be employed to further improve activity.  相似文献   

11.
The metabolism of S-methylcysteine in yeasts   总被引:2,自引:0,他引:2  
  相似文献   

12.
We investigated the relationship between the toxic effect of allopurinol and pyrimidine metabolism in mice. Allopurinol-induced increases in plasma transaminase levels in dinitrofluorobenzene (DNFB)-sensitized mice were not affected by uridine. In contrast, plasma creatinine and BUN tended to decrease 18 hr after the last injection of uridine. Both plasma and urinary orotidine (OD) were detected in DNFB-sensitized mice after administration of a single dose of allopurinol. In contrast, TEI-6720, a newly synthesized xanthine oxidase/xanthine dehydrogenase inhibitor, caused neither pyrimidine metabolism abnormality nor renal impairment in DNFB-sensitized mice. Also, normal mice administered high doses of allopurinol showed abnormal pyrimidine metabolism together with renal toxicity which could be ameliorated by uridine, indicating that allopurinol essentially causes pyrimidine metabolism abnormality leading to renal impairment. In DNFB-sensitized mice, allopurinol increased urinary OD excretion to an extent similar to that in normal mice administered the same dose of allopurinol. However, renal impairment by allopurinol was more striking in DNFB-sensitized mice than in normal mice. Histopathological observations showed that allopurinol induced calculus formation in the collecting tubules and papillary duct. Calculus formation was increased by DNFB and decreased by uridine. These observations indicate that the enhancement of the renal toxicity of allopurinol by DNFB-sensitization may be due to some biological interactions between DNFB and allopurinol. In humans, it is possible that there are some biological interactions which serve to enhance the toxicity of allopurinol, resulting in the development of allopurinol hypersensitivity syndrome (AHS). In contrast, TEI-6720, had no effect on pyrimidine metabolism and showed no toxic effect.  相似文献   

13.
14.
15.
Inhibitor of pyrimidine metabolism from tumor tissues   总被引:1,自引:0,他引:1  
Inhibitors of normal rat liver 5′-nucleotidase and dUMP kinase in vitro were found in rapidly proliferating tissues, such as Yoshida sarcoma. Two inhibitors were separated from Yoshida sarcoma by zone electrophoresis, gel filtration on Sephadex G-200 and DEAE-cellulose column chromatography. One inhibited both 5′-nucleotidase and dUMP kinase, while the other inhibited only dUMP kinase. These inhibitors were not detectable in normal rat liver. They were induced in regenerating rat liver and present in rapidly proliferating tissues, such as Yoshida sarcoma and Ehrlich ascites tumor and rat marrow cells. These inhibitors were heat labile. One had a large molecular weight (500,000>) and the other a small molecular weight (Ca. 50,000).  相似文献   

16.
17.
The washed cells of Hansenula polymorpha and Pichia pinus grown on the medium with methanol rapidly acidify the medium during incubation with the mentioned alcohol or formaldehyde. It is found that proton extrusion is coupled with formate anion efflux. Acidification is proved to be energy-dependent process since it is inhibited by respiration poisons, uncouplers of oxidative phosphorylation, and by ATPase inhibitors.  相似文献   

18.
Sugars are excellent carbon sources for all yeasts. Since a vast amount of information is available on the components of the pathways of sugar utilization in Saccharomyces cerevisiae it has been tacitly assumed that other yeasts use sugars in the same way. However, although the pathways of sugar utilization follow the same theme in all yeasts, important biochemical and genetic variations on it exist. Basically, in most non-conventional yeasts, in contrast to S. cerevisiae, respiration in the presence of oxygen is prominent for the use of sugars. This review provides comparative information on the different steps of the fundamental pathways of sugar utilization in non-conventional yeasts: glycolysis, fermentation, tricarboxylic acid cycle, pentose phosphate pathway and respiration. We consider also gluconeogenesis and, briefly, catabolite repression. We have centered our attention in the genera Kluyveromyces, Candida, Pichia, Yarrowia and Schizosaccharomyces, although occasional reference to other genera is made. The review shows that basic knowledge is missing on many components of these pathways and also that studies on regulation of critical steps are scarce. Information on these points would be important to generate genetically engineered yeast strains for certain industrial uses.  相似文献   

19.
The activity of enzymes involved in methanol oxidation and assimilation as well as the levels of formaldehyde and glutathione were determined during batch cultivation of Candida boidinii KD1 in a medium with methanol. The distribution of [14C]methanol between oxidative and biosynthetic processes in the yeast was analysed. Changes in the concentrations of formaldehyde and glutathione were found to correlate with the activity of formaldehyde dehydrogenase. The results indicate that an increase in the concentration of reduced glutathione (GSH) at the early logarithmic phase of the yeast growth stimulates formaldehyde oxidation via formate to carbon dioxide whereas a subsequent decrease in the concentration of GSH favours formaldehyde assimilation.  相似文献   

20.
The evolution of the metabolism of sulfur compounds among yeast species was investigated. Differences between species were observed in the cysteine biosynthesis pathway. Most yeast species possess two pathways leading to cysteine production, the transsulfuration pathway and the O-acetyl-serine (OAS) pathway, with the exception of Saccharomyces cerevisiae and Candida glabrata, which only display the transsulfuration pathway, and Schizosaccharomyces pombe, which only have the OAS pathway. An examination of the components of the regulatory network in the different species shows that it is conserved in all the species analyzed, as its central component Met4p was shown to keep its functional domains and its partners were present. The analysis of the presence of genes involved in the catabolic pathway shows that it is evolutionarily conserved in the sulfur metabolism and leads us to propose a role for two gene families which appeared to be highly conserved. This survey has provided ways to understand the diversity of sulfur metabolism products among yeast species through the reconstruction of these pathways. This diversity could account for the difference in metabolic potentialities of the species with a biotechnological interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号