首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A kinetic scheme is proposed for the action of cobra venom phospholipase A2 on mixed micelles of phospholipid and the nonionic detergent Triton X-100, based on the "dual phospholipid model." (formula; see text) The water-soluble enzyme binds initially to a phospholipid molecule in the micelle interface. This is followed by binding to additional phospholipid in the interface and then catalytic hydrolysis. A kinetic equation was derived for this process and tested under three experimental conditions: (i) the mole fraction of substrate held constant and the bulk substrate concentration varied; (ii) the bulk substrate concentration held constant and the Triton X-100 concentration varied (surface concentration of substrate varied); and (iii) the Triton X-100 concentration held constant and the bulk substrate concentration varied. The substrates used were chiral dithiol ester analogs of phosphatidylcholine (thio-PC) and phosphatidylethanolamine (thio-PE), and the reactions were followed by reaction of the liberated thiol with a colorimetric thiol reagent. The initial binding (Ks = k1/k-1) was apparently similar for thio-PC and thio-PE (between 0.1 and 0.2 mM) as were the apparent Michaelis constants (Km = (k-2 + k3)/k2) (about 0.1 mol fraction). The Vmax values for thio-PC and thio-PE were 440 and 89 mumol min-1 mg-1, respectively. The preference of cobra venom phospholipase A2 for PC over PE in Triton X-100 mixed micelles appears to be an effect on k3 (catalytic rate) rather than an effect on the apparent binding of phospholipid in either step of the reaction.  相似文献   

2.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

3.
S Stieger  U Brodbeck 《Biochimie》1991,73(9):1179-1186
We investigated the enzymatic properties of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus cereus towards glycosyl-phosphatidylinositol anchored acetylcholinesterase (AChE) from bovine erythrocytes and Torpedo electric organ as substrate. The conversion of membrane from AChE to soluble AChE by PI-PLC depended on the presence of a detergent and of phosphatidylcholine. In presence of mixed micelles containing Triton X-100 (0.05%) and phosphatidylcholine (0.5 mg/ml) the rate of AChE conversion was about 3 times higher than in presence of Triton X-100 alone. Furthermore, inhibition of PI-PLC occurring at Triton X-100 concentrations higher than 0.01% could be prevented by addition of phosphatidylcholine. Ca2+, Mg2+ and sodium chloride had no effect on PI-PLC activity in presence of phosphatidylcholine and Triton X-100, whereas in presence of Triton X-100 alone sodium chloride largely increased the rate of AChE conversion. Determination of kinetic parameters with three different substrates gave Km-values of 7 microM, 17 microM and 2 mM and Vmax-values of 0.095 microM.min-1, 0.325 microM.min-1 and 56 microM.min-1 for Torpedo AChE, bovine erythrocyte AChE and phosphatidylinositol, respectively. The low Km-values for both forms of AChE indicated that PI-PLC not only recognized the phosphatidylinositol moiety of the anchor but also other components thereof.  相似文献   

4.
The release of free arachidonic acid from membrane phospholipids is believed to be the rate-controlling step in the production of the prostaglandins, leukotrienes, and related metabolites in inflammatory cells such as the macrophage. We have previously identified several different phospholipases in the macrophage-like cell line P388D1 potentially capable of controlling arachidonic acid release. Among them, a membrane-bound, alkaline pH optimum, Ca2+-dependent phospholipase A2 is of particular interest because of the likelihood that the regulatory enzyme has these properties. This phospholipase A2 has now been solubilized from the membrane fraction with octyl glucoside and partially purified. The first two steps in this purification are butanol extractions that yield a lyophilized, stable preparation of phospholipase A2 lacking other phospholipase activities. This phospholipase A2 shows considerably more activity when assayed in the presence of glycerol, regardless of whether the substrate, dipalmitoylphosphatidylcholine, is in the form of sonicated vesicles or mixed micelles with the nonionic surfactant Triton X-100. Glycerol (70%) increases both the Vmax and the Km with both substrate forms, giving a Vmax of about 15 nmol min-1 mg-1 and an apparent Km of about 60 microM for vesicles and a Vmax of about 100 nmol min-1 mg-1 and an apparent Km of about 1 mM for mixed micelles. Vmax/Km is slightly greater for vesicles than for mixed micelles. The lyophilized preparation of the enzyme is routinely purified about 60-fold and is suitable for evaluating phospholipase A2 inhibitors such as manoalide analogues. Subsequent steps in the purification are acetonitrile extraction followed by high performance liquid chromatography on an Aquapore BU-300 column and a Superose 12 column. This yields a 2500-fold purification of the membrane-bound phospholipase A2 with a 25% recovery and a specific activity of about 800 nmol min-1 mg-1 toward 100 microM dipalmitoylphosphatidylcholine in mixed micelles. When this material was subjected to analysis on a Superose 12 sizing column, the molecular mass of the active fraction was approximately 18,000 daltons.  相似文献   

5.
An extracellular beta-glucosidase (EC 3.2.1.21) was purified from culture filtrate of the anaerobic rumen fungus Orpinomyces sp. strain PC-2 grown on 0.3% (wt vol-1) Avicel by using Q Sepharose anion-exchange chromatography, ammonium sulfate precipitation, chromatofocusing ion-exchange chromatography, and Superose 12 gel filtration. The enzyme is monomeric with a M(r) of 85,400, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, has a pI of 3.95, and contains about 8.5% (wt vol-1) carbohydrate. The N terminus appears to be blocked. The enzyme catalyzes the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (PNPG). The Km and Vmax values with cellobiose as the substrate at pH 6.0 and 40 degrees C are 0.25 mM and 27.1 mumol.min-1 x mg-1, respectively; with PNPG as the substrate, the corresponding values are of 0.35 mM and 27.7 mumol.min-1 x mg-1. Glucose (Ki = 8.75 mM, with PNPG as the substrate) and gluconolactone (Ki = 1.68 x 10(-2) and 2.57 mM, with PNPG and cellobiose as the substrates, respectively) are competitive inhibitors. Optimal activity with PNPG and cellobiose as the substrates is at pH 6.2 and 50 degrees C. The enzyme has high activity against sophorose (beta-1,2-glucobiose) and laminaribiose (beta-1,3-glucobiose) but has no activity against gentiobiose (beta-1,6-glucobiose). The activity of the beta-glucosidase is stimulated by Mg2+, Mn2+, Co2+, and Ni2+ and inhibited by Ag+, Fe2+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate.  相似文献   

6.
J P Benedetto  M B Martel  R Got 《Biochimie》1979,61(10):1125-1132
Kinetic studies indicate that glucose-6-phosphatase is a multifunctional enzyme. a) Phosphohydrolase activities. The mannose-6-phosphatase activity is low (Km = 8 mM, VM = 90 nmoles. min-1mg-1). The enzyme shows a strong affinity for glucose-6-phosphate (Km = 2.5 mM, VM = 220 nmoles.min-1mg-1). beta-glycerophosphate (K1 = 30 mM), D-glucose (Ki = 120 mM) are mixed type inhibitors; pyrophosphate (Ki = 2 mM) is a non competitive one. b) Phosphotransferase activities. Di and triphosphate adenylic nucleosides or phosphoenol pyruvate are not substrates. Carbamylphosphate serves as a phosphoryl donor with D-glucose as acceptor. The phosphate transfer is consisstent with a random mechanism in which the binding of one substrate increases the enzymes affinity for the second substrate. Apparent Km values for carbamyl-phosphate range from 5.2 mM (D-glucose concentration leads to infinity) to 8 mM (D-glucose concentration leads to 0). The corresponding apparent Km values for D-glucose are 59 mM (carbamyl-phosphate concentration leads to infinity) to 119 mM (carbamyl-phosphate concentration leads to 0). Maximal reaction velocity with infinite levels of both substrates is 270 nmoles.min-1.mg-1. Pyrophosphate is a poor phosphoryl donnor (Km = 55 mM with D-glucose concentration 250 mM). In addition we do not find any latency; detergents, namely sodium deoxycholate, Triton X 100 do not affect or inhibit glucose-6-phosphatase activity.  相似文献   

7.
The cyclic AMP-dependent protein kinase catalyzes the phosphorylation of hydroxyproline present in the heptapeptide, Leu-Arg-Arg-Ala-Hyp-Leu-Gly. The Km value for the reaction with this substrate was high (approximately 18 mM) compared to the Km values reported for the analogous threonine and serine-containing peptides, which were 0.59 mM and 0.016 mM, respectively (Kemp, B.E., Graves, D.J., Benjamini, E., and Krebs, E.G. (1977) J. Biol. Chem. 252, 4888-4894). The Vmax value with the hydroxyproline-containing peptide was 1 mumol . min-1 mg-1 in contrast to Vmax values of 6 mumol . min-1 mg-1 and 20 mumol . min-1 mg-1 for the threonine- and serine-containing peptides, respectively. Phosphate esterified to hydroxyproline present in the peptide was relatively stable in hot alkali, only 10% being released as Pi within 30 min in 0.1 N NaOH at 100 degrees C, whereas all of the phosphate was released from the phosphoserine peptide analogue under these conditions. Phosphohydroxyproline in the peptide was also more stable to acid (5.7 N HCl, 110 degrees C) than phosphoserine, the time for 50% release as Pi being 15 h in contrast to 6 h for the latter.  相似文献   

8.
Substrate specificity of a multifunctional calmodulin-dependent protein kinase   总被引:31,自引:0,他引:31  
The substrate specificity of the multifunctional calmodulin-dependent protein kinase from skeletal muscle has been studied using a series of synthetic peptide analogs. The enzyme phosphorylated a synthetic peptide corresponding to the NH2-terminal 10 residues of glycogen synthase, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH2, stoichiometrically at Ser-7, the same residue phosphorylated in the parent protein. The synthetic peptide was phosphorylated with a Vmax of 12.5 mumol X min-1 X mg-1 and an apparent Km of 7.5 microM compared to values of 1.2 mumol X min-1 X mg-1 and 3.1 microM, respectively, for glycogen synthase. Similarly, a synthetic peptide corresponding to the NH2-terminal 23 residues of smooth muscle myosin light chain was readily phosphorylated on Ser-19 with a Km of 4 microM and a Vmax of 5.4 mumol X min-1 X mg-1. The importance of the arginine 3 residues NH2-terminal to the phosphorylated serine in each of these peptides was evident from experiments in which this arginine was substituted by either leucine or alanine, as well as from experiments in which its position in the myosin light chain sequence was varied. Positioning arginine 16 at residues 14 or 17 abolished phosphorylation, while location at residue 15 not only decreased Vmax 14-fold but switched the major site of phosphorylation from Ser-19 to Thr-18. It is concluded that the sequence Arg-X-Y-Ser(Thr) represents the minimum specificity determinant for the multifunctional calmodulin-dependent protein kinases. Studies with various synthetic peptide substrates and their analogs revealed that the specificity determinants of the multifunctional calmodulin-dependent protein kinase were distinct from several other "arginine-requiring" protein kinases.  相似文献   

9.
Cyanobacterial (Spirulina platensis) photosynthetic membranes and isolated F1 ATPase were characterized with respect to ATP activity. The following results indicate that the regulation of expression of ATPase activity in Spirulina platensis is similar to that found in chloroplasts: the ATPase activity of Spirulina membranes and isolated F1 ATPase is mostly latent, a characteristic of chloroplast ATPase activity; treatments that elicit ATPase activity in higher plant chloroplast thylakoids and isolated chloroplast coupling factor (CF1) greatly stimulate the activity of Spirulina membranes and F1, and the cation specificity of chloroplast ATPase activity, e. g., light-induced membrane activity that is magnesium dependent and trypsin-activated CF1 activity that is calcium dependent, is also observed in Spirulina. Thus, an 8- to 15-fold increase in specific activity (to 13-15 mumol Pi min-1 mg chl-1) is obtained when Spirulina membranes are treated with trypsin (CaATPase) or with methanol (MgATPase): a light-induced, dithiothreitol-dependent MgATPase activity is also found in the membranes. Purified Spirulina F1 is a CaATPase when activated with trypsin (endogenous activity increases from 4 to 27-37 mumol Pi min-1 mg protein-1) or with dithiothreitol (5.6 mumol Pi min-1 mg-1), but a MgATPase when assayed with methanol (18-20 mumol Pi min-1 mg-1). The effects of varying calcium and ATP concentrations on the kinetics of trypsin-induced CaATPase activity of Spirulina F1 were examined. When the calcium concentration is varied at constant ATP concentration, the velocity plot shows a marked sigmoidicity. By varying Ca-ATP metal-nucleotide complex concentration at constant concentrations of free calcium or ATP, it is shown that the sigmoidicity is due to the effect of free ATP, which changes the Hill constant to 1.6 from 1.0 observed when the free calcium concentration is kept constant at 5 mM. Therefore not only is ATP an inhibitor but it is also an allosteric effector of Spirulina F1 ATPase activity. At 5 mM free calcium, the Km for teh Ca-ATP metal-nucleotide complex is 0.42 mM.  相似文献   

10.
Adenosine triphosphate hydrolysis by purified rubisco activase   总被引:15,自引:0,他引:15  
Activation of ribulose bisphosphate carboxylase/oxygenase (rubisco) in vivo is mediated by a specific protein, rubisco activase. In vitro, activation of rubisco by rubisco activase is dependent on ATP and is inhibited by ADP. Purified rubisco activase hydrolyzed ATP with a specific activity of 1.5 mumol min-1 mg-1 protein, releasing approximately stoichiometric amounts of ADP and Pi. Hydrolysis was highly specific for ATP-Mg and had a broad pH optimum, with maximum activity at pH 8.0-8.5. ATPase activity was inhibited by ADP but not by molybdate, vanadate, azide, nitrate, or fluoride. Addition of rubisco in either the inactive or activated form had no significant effect on ATPase activity. Incubation of rubisco activase in the absence of ATP resulted in loss of both ATPase and rubisco activation activities. Both activities were also heat labile, with 50% loss in activity after 5 min at 38 degrees C and complete inhibition following treatment at 43 degrees C. Both activities showed a sigmoidal response to ATP concentration, with half-maximal activity at 0.053 mM ATP. Rubisco activation activity was dependent on the concentrations of both ATP and ADP. The results suggest that ATPase activity is an intrinsic property of rubisco activase.  相似文献   

11.
Alkaline invertase from sprouting soybean (Glycine max) hypocotyls was purified to apparent electrophoretic homogeneity by consecutive use of DEAE-cellulose, green 19 dye, and Cibacron blue 3GA dye affinity chromatography. This protocol produced about a 100-fold purification with about a 11% yield. The purified protein had a specific activity of 48 mumol of glucose produced mg-1 protein min-1 (pH 7.0) and showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) (58 kDa) and in native PAGE, as indicated by both protein and activity staining. The native enzyme molecular mass was about 240 kDa, suggesting a homotetrameric structure. The purified enzyme exhibited hyperbolic saturation kinetics with a Km (sucrose) near 10 mM and the enzyme did not utilize raffinose, maltose, lactose, or cellibose as a substrate. Impure alkaline invertase preparations, which contained acid invertase activity, on contrast, showed biphasic curves versus sucrose concentration. Combining equal activities of purified alkaline invertase with acid invertase resulted in a biphasic response, but there was a transition to hyperbolic saturation kinetics when the activity ratio, alkaline: acid invertase, was increased above unity. Alkaline invertase activity was inhibited by HgCl2, pridoxal phosphate, and Tris with respective Ki values near 2 microM, 5 microM, and 4 mM. Glycoprotein staining (periodic acid-Schiff method) was negative and alkaline invertase did not bind to two immobilized lectins, concanavalin A and wheat germ agglutinin; hence, the enzyme apparently is not a glycoprotein. The purified alkaline invertase, and a purified soybean acid invertase, was used to raise rabbit polyclonal antibodies. The alkaline invertase antibody preparation was specific for alkaline invertase and cross-reacted with alkaline invertases from other plants. Neither purified soybean alkaline invertases nor the crude enzyme from several plants cross-reacted with the soybean acid invertase antibody.  相似文献   

12.
T C Tsai  J Hart  R T Jiang  K Bruzik  M D Tsai 《Biochemistry》1985,24(13):3180-3188
It has been shown recently by 31P nuclear magnetic resonance (NMR) that phospholipase A2 (PL A2) from bee venom shows a high degree of stereoselectivity toward the "isomer B" of 1,2-dipalmitoyl-sn-glycero-3-thiophosphocholine (DPPsC) [Bruzik, K., Jiang, R.-T., & Tsai, M.-D. (1983) Biochemistry 22, 2478-2486]. We now report a quantitative kinetic study of PL A2 using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and (RP)-, (SP)-, and (RP + SP)-DPPsC by a spectrophotometric assay. The substrates were mixed with Triton X-100 to form mixed micelles, and steady-state kinetic theories were applied. The enzyme was activated by Ca2+, which induced a conformational change of the enzyme, as shown by UV difference spectra. The apparent dissociation constant of Ca2+/PL A2 is 2.5 mM. In the presence of Ca2+, large substrate specificity and stereospecificity in Vmax (in mumol min-1 mg-1) were observed: DPPC, 1850; (RP)-DPPsC, 7.6; (RP + SP)-DPPsC, 64; (SP)-DPPsC, 0.044. On the other hand, relatively small variation in Km was observed, which suggests that the interfacial interaction is relatively nonspecific among the substrates studied. (SP)-DPPsC and Cd2+ were shown as competitive inhibitors for the hydrolysis of DPPC by Ca2+/PL A2. Binding of Cd2+ with apo-PL A2 was also demonstrated by UV difference spectra, with a dissociation constant of 0.59 mM. Activation of apo-PL A2 by Cd2+ was unequivocally demonstrated for (SP)-DPPsC by use of 31P NMR. The Vmax values of Cd2+/PL A2 were DPPC/(RP)-DPPsC/(SP)-DPPsC = 17.6/0.069/0.0044 mumol min-1 mg-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Acetyl phosphate produced an increase in the maximum velocity (Vmax. for the carboxylation of phosphoenolpyruvate catalysed by phosphoenolpyruvate carboxylase. The limiting Vmax. was 22.2 mumol X min-1 X mg-1 (185% of the value without acetyl phosphate). This compound also decreased the Km for phosphoenolpyruvate to 0.18 mM. The apparent activation constants for acetyl phosphate were 1.6 mM and 0.62 mM in the presence of 0.5 and 4 mM-phosphoenolpyruvate respectively. Carbamyl phosphate produced an increase in Vmax. and Km for phosphoenolpyruvate. The variation of Vmax./Km with carbamyl phosphate concentration could be described by a model in which this compound interacts with the carboxylase at two different types of sites: an allosteric activator site(s) and the substrate-binding site(s). Carbamyl phosphate was hydrolysed by the action of phosphoenolpyruvate carboxylase. The hydrolysis produced Pi and NH4+ in a 1:1 relationship. Values of Vmax. and Km were 0.11 +/- 0.01 mumol of Pi X min-1 X mg-1 and 1.4 +/- 0.1 mM, respectively, in the presence of 10 mM-NaHCO3. If HCO3- was not added, these values were 0.075 +/- 0.014 mumol of Pi X min-1 X mg-1 and 0.76 +/- 0.06 mM. Vmax./Km showed no variation between pH 6.5 and 8.5. The reaction required Mg2+; the activation constants were 0.77 and 0.31 mM at pH 6.5 and 8.5 respectively. Presumably, carbamyl phosphate is hydrolysed by phosphoenolpyruvate carboxylase by a reaction the mechanism of which is related to that of the carboxylation of phosphoenolpyruvate.  相似文献   

14.
The reaction velocity of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) was quantified with a cytophotometer by continuous monitoring of the reaction product as it was formed in liver cryostat sections from normal, young mature female rats at 37 degrees C. Control incubations were performed in media lacking both substrate and coenzyme for G6PDH activity and lacking substrate for PGDH activity. All reaction rates were non-linear but test minus control reactions showed linearity with incubation time up to 5 min using Nitro BT as final electron acceptor. End point measurements after incubation for 5 min at 37 degrees C revealed that the highest specific activity of G6PDH was present in the intermediate area (Vmax = 7.79 +/- 1.76 mumol H2 cm-3 min-1) and of PGDH in the pericentral and intermediate areas (Vmax = 17.19 +/- 1.73 mumol H2 cm-3 min-1). In periportal and pericentral areas, Vmax values for G6PDH activity were 4.48 +/- 1.03 mumol H2 cm-3 min-1) and 3.47 +/- 0.78 mumol H2 cm-3 min-1), respectively. PGDH activity in periportal areas showed a Vmax of 10.84 +/- 0.33 mumol H2 cm3 min-1. Variation of the substrate concentration for G6PDH activity yielded similar KM values of 0.17 +/- 0.07 mM, 0.15 +/- 0.13 mM and 0.22 +/- 0.11 mM in periportal, pericentral and intermediate areas, respectively. KM values of 0.87 +/- 0.12 mM in periportal and of 1.36 +/- 0.10 mM in pericentral and intermediate areas were found for PGDH activity. The significant difference between KM values for PGDH in areas within the acinus support the hypothesis that PGDH is present in the cytoplasmic matrix and in the microsomes. A discrepancy existed between KM and Vmax values determined in cytochemical assays using cryostat sections and values calculated from biochemical assays using diluted homogenates. In cytochemical assays, the natural microenvironment for enzymes is kept for the demonstration of their activity and thus may give more accurate information on enzyme reactions as they take place in vivo.  相似文献   

15.
A protein which supported MgATP-dependent movement of latex beads from the minus to the plus end of microtubules and which had microtubule-activated Mg2+-ATPase was purified from Acanthamoeba castellanii. At concentrations as low as 0.6 micrograms ml-1, the translocator supported movement of beads at a rate of 3 to 4 micron s-1. The translocator protein had a Ca2+-ATPase activity of 1.7 mumol min-1 mg-1 and a Mg2+-ATPase activity of about 0.03 mumol min-1 mg-1 in the absence of microtubules. The Mg2+-ATPase in the presence of microtubules had a Vmax of 3.4 mumol min-1 mg-1; half-maximal Mg2+-ATPase activity required only 0.45 microM microtubules (concentration of dimer subunits). The highly purified native protein had a Stokes radius of 8.5 nm, and three polypeptides of Mr 134,000, 139,000, and 147,000 were associated with the fractions that had maximum translocator and ATPase activities.  相似文献   

16.
Pancreatic porcine phospholipase A2 catalyzed hydrolysis of phosphatidylcholine in bile salt lecithin mixed micelles has been studied, utilizing a series of assay mixtures for which the micellar size, weight, and composition had been experimentally determined. Under these conditions the enzymatic hydrolysis is dependent on the phosphatidylcholine-to-sodium cholate molar ratio within the mixed micelle rather than the bulk concentration of the phospholipid in the mixture: at 5 mM phosphatidylcholine, variation of the NPC/NNaCh ratio from 0.2 to 2.0 increases the enzymatic activity from 82 to 933 mumol/min/mg protein. The initial rates are linear throughout the entire series of assay mixtures, the activity vs micellar concentration curves exhibit saturation behavior, and treatment of the data according to the "surface-as-cofactor" theory provides linear double-reciprocal plots which intersect in one point. The assay system should be applicable for detailed kinetic studies of lipolytic enzymes, including mammalian phospholipases which exhibit rather low activities toward lecithin-Triton X-100 mixed micelles. The system should also provide a convenient basis for mechanistic studies involving the use of inhibitory phospholipid substrate analogs.  相似文献   

17.
The use of high-performance liquid chromatography to identify and quantitate five purine-metabolizing enzymes from a partially purified subcellular fraction of the eucaryotic microorganism Dictyostelium discoideum is described. All HPLC separations were carried out in an isocratic manner using reverse-phase C18 as the stationary phase. The mobile phase consisted of a phosphate buffer with either methanol or acetonitrile as cosolvent, and optimal separation conditions were attained by varying the organic concentration or the pH of the buffer or by employing paired-ion chromatographic techniques. Substrates and products were detected at either 254 nm for the purines or 295 nm for the formycin analogs. An adenosine kinase activity was identified, and it was demonstrated that formycin A (FoA) could be substituted for adenosine as the phosphate acceptor, yielding FoAMP as the product. With FoA as the substrate an apparent Km of 18.2 microM and an apparent Vmax of 32.4 mmol min-1 mg-1 were observed for the activity. A purine-nucleoside phosphorylase activity was found to cleave adenosine to adenine and ribosylphosphate. FoA was not found to be a substrate for this activity due to the unusual formycin C-glycosyl bond which was not hydrolyzed by enzymes or chemically with either HCl or NaOH. An adenylate deaminase activity was found to be present in the cytosolic S-100 of cells harvested during the onset of development, and this deaminase activity was greatly stimulated by ATP. With FoAMP as the substrate, an apparent Km of 236 microM and Vmax of 2.78 mumol min-1 mg-1 were observed. The deamination of FoAMP could be inhibited by the addition of the natural substrate AMP. An apparent Ki value of 136 microM was determined from initial rate data. An adenylosuccinate synthetase activity was observed to have a Km value for GTP, IMP, and aspartic acid of 23, 34, and 714 microM, respectively. The formycin analog FoIMP was not a substrate with this activity but was a competitive inhibitor of IMP. Finally hypoxanthine-guanine phosphoribosyltransferase was found to have Km and Vmax values for hypoxanthine of 55.5 microM and 34.3 nmol-1 min-1 mg-1. When guanine was used as the substrate, the rate of nucleotide formation was 50% that with hypoxanthine as the substrate. The advantages of using HPLC to examine the interconnecting activities of a multienzyme complex in subcellular fractions are discussed, including the increased sensitivity obtained by using formycin analogs in the assay procedures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
We show that sialosylgangliotetraosylceramide (GM1) is a potent activator of delipidated (sodium cholate- and 1-butanol-extracted) lysosomal rat liver glucocerebroside:beta-glucosidase. Stimulation of 4-methylumbelliferyl-beta-D-glucopyranoside hydrolysis by the beta-glucosidase was markedly dependent upon the concentration of GM1 in the assay medium. Estimations of critical micellar concentration (CMC) performed fluorometrically using the dye N-phenylnaphthylamine revealed two CMC values of GM1 above 18 degrees C; the CMC of the primary micelles (3.32 microM) was temperature-independent whereas that of the secondary micelles decreased with decreasing temperature (17.2 and 10.8 microM at 37 and 20 degrees C, respectively). In the temperature range of 18-39 degrees C, beta-glucosidase activity increased sharply when the GM1 concentration was above the CMC of the secondary micelles. Although a heat-stable factor, purified from the spleen of a patient with Gaucher's disease, had a profound effect on the activation of beta-glucosidase by GM1, it decreased the CMC only slightly (14.8 versus 17.2 microM at 37 degrees C). The heat-stable factor (8 micrograms/ml) changed the shape of the activation curve from sigmoidal to hyperbolic, suggesting that the heat-stable factor permits beta-glucosidase to be activated by primary micelles or monomers. The results of gel filtration chromatography and sucrose gradient centrifugation in H2O and D2O revealed that the activation of beta-glucosidase by GM1 was associated with an increase in the size of the enzyme from 45,800 to 178,500 daltons and an increase in the partial specific volume from 0.697 to 0.740 ml/g. The active, reconstituted beta-glucosidase appears to consist of 50% protein and 50% ganglioside (56 molecules/178,500 g). Concentrations of GM1 below the CMC of secondary micelles increased the rate of inactivation of the enzyme by the irreversible inhibitor conduritol B epoxide at 37 degrees C, indicating that GM1 monomers or primary micelles do interact with the enzyme, even though they do not increase the rate of hydrolysis of 4-methylumbelliferyl-beta-D-glucopyranoside by the enzyme.  相似文献   

19.
1-Palmitoyl-2-thiopalmitoyl phosphatidylcholine (2-thioPC), a structurally modified phospholipid analog is specifically hydrolyzed by phospholipase A2 to liberate 2-thiolysophosphatidylcholine and palmitic acid. The sulfhydryl group of the product is readily trapped by 5,5'-dithiobis (2-nitrobenzoic acid) allowing continuous spectrophotometric monitoring of the enzymatic reaction. The rates of hydrolysis by bee-venom phospholipase A2 have been determined in a series of Triton X-100 containing mixed micelles. At 1 mM 2-thioPC increasing the concentration of Triton X-100 from 4 to 16 mM changes the specific activity of bee-venom phospholipase A2 from 96.9 to 17.9 mumol/min/mg, about one order of magnitude lower than dipalmitoyl phosphatidylcholine hydrolysis in micelles of similar composition. The chromogenic substrate is the first phospholipid analog exhibiting absolute specificity for phospholipase A2 and should be applicable to spectrophotometric detection and kinetic characterization of both water soluble and membrane-bound forms.  相似文献   

20.
Human lysosomal beta-glucosidase: purification by affinity chromatography   总被引:1,自引:0,他引:1  
Two Sepharose-bound substrate analogs, 6'-aminohexanoyl-(2-N-sphingosyl-O-beta-D-glucoside) and 6'-aminohexyl-dodecanedioyl-1-(2-N-sphingosyl-1-O-beta-D-glu coside), were synthesized and used sequentially for the affinity purification of lysosomal beta-glucosidase (N-acyl-sphingosyl-1-O-beta-D-glucoside:glucohydrolase, EC 3.2.1.45). The capacities of these nondegradable affinity supports were 0.1 and 0.15 mg enzyme/ml settled gel, respectively. The purified enzyme had a specific activity of 75 mumol min-1 mg-1. The preparation had a single protein band with a molecular weight of 67,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, evidencing its apparent homogeneity. Isoelectric focusing on granular gels revealed four molecular forms of the enzyme with pI values of 4.0, 4.5, 4.7, and 5.8 to 6.2. The purified enzyme hydrolyzed glucosyl ceramide and 4-methylumbelliferyl-beta-D-glucoside with Km and Vmax values of 0.6 and 2.5 mM, and 101 and 26.1 mumol min-1 mg-1, respectively. The enzyme also hydrolyzed octyl beta-glucoside, a linear mixed-type inhibitor of the enzyme. Binding constants (Ki) were determined for the inhibitors, sphingosyl-1-O-beta-D-glucoside (Ki = 20 microM) and its N-hexyl derivative (Ki = 0.3 microM). The enzyme had a half-life of 65 and 30 min at 50 degrees C and pH 5.0 or 6.0, respectively. In addition, two other classes of ligands were used for the purification of lysosomal beta-glucosidase, and their capacities and specificities were compared to those of the substrate analog affinity supports. These included (i) the alkyl amine inhibitors octylamine, decylamine, and tetradecylamine; and (ii) the inhibitors, 6-aminohexanoyl-beta-glucosylamine and aminododecanoyl-1-(2-N-sphingosyl-1-O-beta-D-glucoside). Compared to these other ligand columns, the substrate analog affinity supports had about 100- to 1000-fold greater capacities or afforded 8- to 40-fold greater purification of human lysosomal beta-glucosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号