首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苏文浩  王晓楠  董灵波 《生态学报》2024,44(10):4412-4422
为实现大兴安岭地区落叶松天然林的全周期可持续经营,以新林林业局翠岗林场3块100m×100m不同演替阶段(白桦林、落叶松-白桦混交林和落叶松林)的天然林固定调查样地数据为基础,采用统计模型(对数正态模型)、生态位模型(断棍模型、生态位优先占领模型、Zipf模型、Zipf-Mandelbrot模型)和中性模型(群落零和多项式模型、Volkov模型)对不同演替阶段天然林的乔木层、幼苗层和由乔木层划分的不同林层的物种多度格局进行拟合,并用χ2 检验和Kolmogorov-Smirnov检验选择最佳模型。结果表明:(1) 在大兴安岭地区不同演替阶段的落叶松天然林群落中,Zipf-Mandelbrot模型的拟合效果均最好。(2) 对数正态模型对于稳定的演替阶段白桦林和落叶松林的群落相较于过渡阶段群落落叶松-白桦混交林的物种多度分布的拟合效果更好。(3) 在大兴安岭地区落叶松天然林中,生境过滤主导群落构建,随着群落不断演替生境过滤和中性过程减弱。(4) 天然林群落乔木层的群落构建过程与乔木层内不同生长阶段林层的构建过程不同,生境过滤过程在落叶松林乔木层中逐渐减弱,而在落叶松林不同生长阶段的林层和更新层中增强。  相似文献   

2.
Plant litter decomposition is one of the most important processes in terrestrial ecosystems, as it is a key factor in nutrient cycling. Decomposition rates depend on environmental factors, but also plant traits, as these determine the character of detritus. We measured litter decomposition rate for 57 common tree species displaying a variety of functional traits within four sites in primary and four sites in secondary tropical forest in Madang Province, Papua New Guinea. The phylogenetic relationships between these trees were also estimated using molecular data. The leaves collected from different tree species were dried for two days, placed into detritus bags and exposed to ambient conditions for two months. Nitrogen, carbon and ash content were assessed as quantitative traits and used together with a phylogenetic variance– covariance matrix as predictors of decomposition rate. The analysis of the tree species composition from 96 quadrats located along a successional gradient of swidden agriculture enabled us to determine successional preferences for individual species. Nitrogen content was the only functional trait measured to be significantly positively correlated with decomposition rate. Controlling for plant phylogeny did not influence our conclusions, but including phylogeny demonstrated that the mainly early successional family Euphorbiaceae is characterized by a particularly high decomposition rate. The acquisitive traits (high nitrogen content and low wood density) correlated with rapid decomposition were characteristic for early successional species. Decomposition rate thus decreased from early successional to primary forest species. However, the decomposition of leaves from the same species was significantly faster in primary than in secondary forest stands, very probably because the high humidity of primary forest environments keeps the decomposing material wetter.  相似文献   

3.
Although it is widely predicted that the geographic distributions of tree species and forest types will undergo substantial shifts in future, modelling approaches used to date are largely unable to project the pace at which forest distributions will respond to environmental change. The expansion and contraction of forest distributions act against considerable demographic inertia in the present composition and size‐structure of forest stands as climate‐induced changes in growth, mortality, and recruitment alter population dynamics through time. We aimed to better understand how shifts in forest distributions reflect long‐term changes in tree demographic rates and population dynamics, and how such shifts are influenced by 1) disturbance from forest harvesting and 2) local environmental heterogeneity. Using a simple, data‐constrained gap model, we simulated regional forest dynamics in the eastern United States over the next 500 yr. We then compared the geographic distributions of five different forest types through time under present and altered climatic conditions, in scenarios that variously included and excluded forest harvesting and environmental heterogeneity. Although we held climate fixed after 100 yr, it took another 160 yr after this for these forest types to collectively experience 90% of their eventual climate‐related distribution gains and losses. Competition strongly affected the nature of responses to climate change. Harvesting accelerated and amplified gains by an early‐successional forest type at the expense of a late‐successional one, but these gains did not occur faster than those for other forest types. Environmental heterogeneity had little effect on distribution gains or losses through time. These findings indicate that forest distributions should respond quite slowly to climate change, with the leading and trailing edges of different forest types shifting over a span of centuries. Disturbances can expedite some transitions, but are unlikely to lead to wholesale changes in forest types in the coming decades.  相似文献   

4.
A.K. Cajander's forest site type classification system is based on definition of plant communities typical to certain climatical and edaphical site conditions, but the structure and composition of the tree stands in Finland are considered sensitive to random variation and are therefore not used as primary classification criteria. The system has often received criticism, usually that the effects of the tree stand and successional stage of the stand have been underestimated. Most of the present-day forest stands in Finland represent young successional stages and are subjected to intensive management. This should result in an additional difficulty in the application of the forest site types in the field.The present study is based on three independent data sets representing forests on mineral soil in southern part of Finland. TWINSPAN classification, DCA ordination and canonical correspondence analysis (CCA) techniques were applied in successive stages of the data analysis. It was found that the definition of the intermediately fertile, mesic site types was clearly confused by the effects of the tree species and age of the stand. The analyses also revealed that the succession pathways on mesic forest sites are largely determined by the tree species composition. In stands dominated by Pinus sylvestris, the succession follows the competitive hierarchy model, whereas in stands dominated by Picea abies, severe shading of the tree canopy governs the development of understorey vegetation.Abbreviations CCA Canonical correspondence Analysis - DCA Detrended correspondence Analysis - TWINSPAN Two-way indicator species analysis  相似文献   

5.
Advanced recruitment and neutral processes play important roles in determining tree species composition in tropical forest canopy gaps, with few gaps experiencing clear secondary successional processes. However, most studies are limited to the relatively limited spatial scales provided by forest inventory plots, and investigations over the entire range of gap size are needed to better understand how ecological processes vary with tree mortality events. This study employed a landscape approach to test the hypothesis that tree species composition and forest structural attributes differ between large blowdown gaps and relatively undisturbed primary forest. Spectral mixture analysis on hyperspectral satellite imagery was employed to direct field sampling to widely distributed sites, and blowdown plots were compared with undisturbed primary forest plots. Tree species composition and forest structural attributes differed markedly between gap and non-gap sites, providing evidence of niche partitioning in response to disturbance across the region. Large gaps were dominated by classic Neotropical pioneer genera such as Cecropia and Vismia, and average tree size was significantly smaller. Mean wood density of trees recovering in large gaps (0.55 g cm−3) was significantly lower than in primary forest plots (0.71 g cm−3), a difference similar to that found when comparing less dynamic (i.e., tree recruitment, growth, and mortality) Central Amazon forests with more dynamic Western Amazon forests. Based on results, we hypothesize that the importance of neutral processes weaken, and niche processes strengthen, in determining community assembly along a gradient in gap size and tree mortality intensity. Over evolutionary time scales, pervasive dispersal among colonizers could result in the loss of tree diversity in the pioneer guild through competitive exclusion. Results also underscore the importance of considering disturbance processes across the landscape when addressing forest carbon balance.  相似文献   

6.
Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species‐level Poisson processes and estimate patch‐level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early‐successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.  相似文献   

7.
LANDIS PRO predicts forest composition and structure changes incorporating species‐, stand‐, and landscape‐scales processes at regional scales. Species‐scale processes include tree growth, establishment, and mortality. Stand‐scale processes contain density‐ and size‐related resource competition that regulates self‐thinning and seedling establishment. Landscape‐scale processes include seed dispersal and disturbances. LANDIS PRO is designed to be compatible with forest inventory data, thus extensive inventory data can be directly utilized to initialize and calibrate model parameters before predicting future forest changes. LANDIS PRO allows for exploring the effects of disturbances, management, climate change, and modeling the spread of invasive species. We demonstrate that LANDIS PRO successfully predicts forest successional trajectories and stand development patterns in the Central Hardwood Forest region in U.S.  相似文献   

8.
Understanding processes underlying spatial distribution of tree species is fundamental to studying species coexistence and diversity. This study modeled point patterns of tree distribution, expressed by Cartesian coordinates of individual trees within a mapped forest stand, for the purpose of identifying processes that may generate spatial patterns of tree communities. We used four primary point pattern processes (homogeneous Poisson process, inhomogeneous Poisson process, homogeneous Thomas process, and inhomogeneous Thomas process) to model tree distribution in two stem-mapped forests in Taiwan, Republic of China. These four models simulate spatial processes of habitat association and seed dispersal, allowing us to evaluate the potential contribution of habitat heterogeneity and dispersal limitation to the formation of spatial patterns of tree species. The results showed that the inhomogeneous Thomas process was the best fit model and described most of the species studied, suggesting that spatial patterns of tree species might be formed by the joint effects of habitat associations and dispersal limitation. The homogeneous Thomas process that models the effect of dispersal limitation was the second best model. We also found that the best fit models could be predicted by species attributes, including species abundance and dispersal mode. The significant traits, however, differed between the two study plots and demonstrated site-specific patterns. This study indicated that the interactive operation of niche-based (habitat heterogeneity) and neutral-based (dispersal limitation) may be important in generating spatial patterns of tree species in forest communities.  相似文献   

9.
We investigated changes in species composition and structure of tree and liana communities along a successional gradient in a seasonally dry tropical forest. There was a progressive increase in tree richness and all tree structural traits from early to late stages, as well as marked changes in tree species composition and dominance. This pattern is probably related to pasture management practices such as ploughing, which remove tree roots and preclude regeneration by resprouting. On the other hand, liana density decreased from intermediate to late stages, showing a negative correlation with tree density. The higher liana abundance in intermediate stage is probably due to a balanced availability of support and light availability, since these variables may show opposite trends during forest growth. Predicted succession models may represent extremes in a continuum of possible successional pathways strongly influenced by land use history, climate, soil type, and by the outcomes of tree–liana interactions.  相似文献   

10.
黑龙江省不同地点蒙古栎林生态特点研究   总被引:10,自引:2,他引:8  
通过对黑龙江省6个地点的天然蒙古栎林的结构和更新特点的分析,蒙古栎林可划分为不同特点的蒙古栎群落,即纯蒙古栎群落、蒙古栎桦树群落、蒙古栎槭树群落、蒙古栎红松群落和蒙古栎松混交林群落,其演替趋势如下:红蒙古栎群落、蒙古栎桦树群落至蒙古栎槭树落、蒙古栎红松群落,再至蒙古栎红松混交林群落,蒙古栎群落类型的多样性主要反应群落不同的演替阶段,造成蒙古栎群落多样的原因是人类活动和自然因素作用的结果,随着群落的演替,蒙古栎的优势地位逐渐被消弱,乔木种类丰富度增多,草本种类丰富度增多;蒙栎的相对密度下降,林内环境由于干燥逐渐变中性至较湿润,蒙古栎幼苗和幼树在总幼苗和幼树中所占的比例下降,耐荫物中色木槭等的幼苗和幼树所占比例上升;在演替过程中,蒙古栎分布格局-聚集分布的聚集程度逐渐降低,并向随机分布的方向发展。  相似文献   

11.
黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子   总被引:8,自引:0,他引:8  
林火干扰是大兴安岭森林更新的影响因子之一,研究火烧迹地森林更新的影响因子(立地条件、火前植被、火干扰特征)对理解生态系统的结构、功能和火后演替轨迹具有重要意义。选取呼中及新林林业局55个代表性火烧样地,利用增强回归树分析法分析了火烧迹地森林更新的影响因素。结果表明:(1)立地条件是影响针、阔叶树更新苗密度的主要因素;海拔对针叶树更新苗密度的影响最大;坡度对阔叶树更新苗密度影响最大;(2)距上次火烧时间对针叶树更新苗比重影响最大,其次是林型;(3)中度林火干扰后森林更新状况好于轻度和重度火烧迹地。根据火烧迹地森林更新调查分析可知:林型影响火后演替模式,火前为针叶树或阔叶树纯林,火后易发生自我更新(火后树种更新组成与火前林型相同),而针阔混交林在火干扰影响下易于发生序列演替(火后初期以早期演替树种更新为主)。  相似文献   

12.
We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates of uncertainty. We illustrate our method using tree data for the eastern United States and from a tropical successional chronosequence. The model is able to detect pervasive declines in the oak community in Minnesota and Indiana, potentially due to fire suppression, increased growing season precipitation and herbivory. The chronosequence analysis is able to delineate clear successional trends in species composition, while also revealing that site‐specific factors significantly impact these successional trajectories. The proposed method provides a means to decompose and track the dynamics of species assemblages along temporal and spatial gradients, including effects of global change and forest disturbances.  相似文献   

13.
Forest successional processes following disturbance take decades to play out, even in tropical forests. Nonetheless, records of vegetation change in this ecosystem are scarce, increasing the importance of the chronosequence approach to study forest recovery. However, this approach requires accurate dating of secondary forests, which until now was a difficult and/or expensive task. Cecropia is a widespread and abundant pioneer tree genus of the Neotropics. Here we propose and validate a rapid and straightforward method to estimate the age of secondary forest patches based on morphological observations of Cecropia trees. We found that Cecropia-inferred ages were highly correlated with known ages of the forest. We also demonstrate that Cecropia can be used to accurately date disturbances and propose twenty-one species distributed all over the geographical range of the genus as potential secondary forest chronometer species. Our method is limited in applicability by the maximal longevity of Cecropia individuals. Although the oldest chronosequence used in this study was 20 years old, we argue that at least for the first four decades after disturbance, the method described in this study provides very accurate estimations of secondary forest ages. The age of pioneer trees provides not only information needed to calculate the recovery of carbon stocks that would help to improve forest management, but also provides information needed to characterize the initial floristic composition and the rates of species remigration into secondary forest. Our contribution shows how successional studies can be reliably and inexpensively extended without the need to obtain forest ages based on expensive or potentially inaccurate data across the Neotropics.  相似文献   

14.
Generation of Spatial Patterns in Boreal Forest Landscapes   总被引:2,自引:0,他引:2  
Boreal forests are composed of a few plant species with contrasting traits with respect to ecosystem functioning and spatial patterning. Early successional deciduous species, such as birch and aspen, disperse seeds widely, do not tolerate low light and nitrogen availabilities, have rapidly decaying litter, and are highly preferred by herbivores. These later succeed to conifers, such as spruce and fir, which disperse seeds locally, tolerate low light levels and low nitrogen availability, have litter that decays slowly, and are unpalatable to most mammalian herbivores. Although there are also early successional conifers, such as jack pine and Scots pine, the aspen-birch-spruce-fir successional sequence is the most common over much of North America, and (without fir) in Fennoscandia and Siberia. The course of succession in these forests is controlled partly by seed dispersal and selective foraging by mammalian herbivores. Both of these processes are spatially dynamic, but little is known about how their spatial dynamics may affect ecosystem processes, such as nitrogen cycling or productivity. We present spatially explicit models that demonstrate the following: (a) Spatially explicit seed dispersal results in more clumped distribution of tree species and persistence of greater paper birch biomass than uniform seed rain across the landscape. Such results are consistent with current spatially explicit population models of dispersal and coexistence. (b) With localized seed dispersal, the concentrations of available soil nitrogen are distributed in larger patches with sharp transitions from low to high nitrogen availability near patch edges. In contrast, with a uniform seed rain, the distribution of soil nitrogen availability was more uniform and “hotspots” were more localized. Thus, the spatial pattern of an ecosystem process (nitrogen cycling) is determined by seed dispersal and competition for light among competing populations. (c) A dispersing herbivore, such as moose, that selectively forages on early successional deciduous species with high quality litter, such as aspen or birch, and discriminates against late successional conifers, such as spruce or fir, imposes higher-order repeated patterns of plant species and biomass distribution on the landscape. Thus, seed dispersal and herbivore foraging correlate properties in adjacent patches but in different ways, and different spatial patterns emerge. Other processes, such as insect outbreaks, fire, and water flow, also may correlate properties between adjacent patches and result in additional patterns. Received 8 February 1999; accepted 28 May 1999.  相似文献   

15.
Alcoa World Alumina Australia has been rehabilitating bauxite mines in the jarrah (Eucalyptus marginata) forest of western Australia for more than 35 years. Completion criteria were developed in the 1990s for native species rehabilitation, with various desirable characteristics described as the rehabilitation ages. Successional models can be useful in mining rehabilitation for predicting whether sites are developing along the desired trajectory toward the rehabilitation objective. The current rehabilitation objective is to establish a self‐sustaining jarrah forest ecosystem, planned to enhance or maintain water, timber, recreation, and conservation values. The major objective of this study was to present a state‐and‐transition successional model that assists Alcoa to identify sites that will and will not meet identified completion criteria. Agreed completion criteria and vegetation data collected from native species rehabilitation from 9 months to 15 years old were used to construct a state‐and‐transition model. The model identified the various desired and deviated successional states and factors that cause transitions between these states. Five desirable and nine deviated states were identified and described in detail. Key indicators relating to desired and deviated states include eucalypt density, species richness, legume density, topsoil cover, vegetation structure, ripping depth, and tree health and form. Identified management manipulations to return deviated states to the desired successional trajectory include ripping, reseeding, replanting, weed control, and tree thinning. Some of the identified thresholds between desired and deviated states will require significant management input (e.g., reripping), whereas others require little or no input (e.g., recovery following wildfire). Of the 6,429 ha of native species rehabilitation undertaken between 1991 and 2002, 98% is on or above the desired successional trajectory. More than half of the rehabilitated area is regarded as being above the desired trajectory because of high tree density. Although these sites meet the existing completion criteria, management input may be required in the future, emphasizing the importance of identifying maximum and minimum completion criteria. The state‐and‐transition model of successional development is a practical but rigorous land management tool that has the potential to be applied in a wide variety of ecosystems and wide range of land uses.  相似文献   

16.
岷江冷杉林皆伐后次生群落结构和物种多样性的演替动态   总被引:1,自引:0,他引:1  
缪宁  周珠丽  史作民  冯秋红 《生态学报》2014,34(13):3661-3671
为阐明岷江冷杉林皆伐后次生群落的演替过程,采用空间代替时间的方法,在川西米亚罗林区海拔3100—3600 m的阴坡选择岷江冷杉林皆伐后次生演替10、20、30、40和50a阶段的次生群落作为研究对象,对其群落结构和物种多样性的动态进行了研究。不同演替阶段的树木均呈显著聚集分布。按群落中优势种的重要值将该演替序列划分为3个类型:悬钩子-蔷薇灌丛、白桦阔叶林和桦木-岷江冷杉针阔混交林。随次生演替,乔木和灌木种的物种丰富度趋于增加,而草本种的物种丰富度趋于减少;乔木和灌木种的Shannon-Wiener多样性指数趋于增大,而草本的Shannon-Wiener多样性指数趋于减小;乔木、灌木和草本层的Pielou均匀度指数均趋于增大;乔木层的Simpson优势度指数趋于减小,灌木和草本层的Simpson优势度指数在演替0—40年阶段趋于增大,而在演替50a阶段趋于减小。在该演替序列中,乔木、灌木和草本层的物种组成均呈耐荫种替代非耐荫种的趋势。  相似文献   

17.
Tree vigor is often used as a covariate when tree mortality is predicted from tree growth in tropical forest dynamic models, but it is rarely explicitly accounted for in a coherent modeling framework. We quantify tree vigor at the individual tree level, based on the difference between expected and observed growth. The available methods to join nonlinear tree growth and mortality processes are not commonly used by forest ecologists so that we develop an inference methodology based on an MCMC approach, allowing us to sample the parameters of the growth and mortality model according to their posterior distribution using the joint model likelihood. We apply our framework to a set of data on the 20‐year dynamics of a forest in Paracou, French Guiana, taking advantage of functional trait‐based growth and mortality models already developed independently. Our results showed that growth and mortality are intimately linked and that the vigor estimator is an essential predictor of mortality, highlighting that trees growing more than expected have a far lower probability of dying. Our joint model methodology is sufficiently generic to be used to join two longitudinal and punctual linked processes and thus may be applied to a wide range of growth and mortality models. In the context of global changes, such joint models are urgently needed in tropical forests to analyze, and then predict, the effects of the ongoing changes on the tree dynamics in hyperdiverse tropical forests.  相似文献   

18.
Methodological bases of optimization modeling approach are considered in regard to describing critical phenomena in forest ecosystems. Models of insects’ outbreaks, forest successions, forest fires as second order phase transitions are proposed. It is shown that there is fair correlation between model calculations and observations data.  相似文献   

19.
Species distribution models (SDMs) project the outcome of community assembly processes – dispersal, the abiotic environment and biotic interactions – onto geographic space. Recent advances in SDMs account for these processes by simultaneously modeling the species that comprise a community in a multivariate statistical framework or by incorporating residual spatial autocorrelation in SDMs. However, the effects of combining both multivariate and spatially-explicit model structures on the ecological inferences and the predictive abilities of a model are largely unknown. We used data on eastern hemlock Tsuga canadensis and five additional co-occurring overstory tree species in 35 569 forest stands across Michigan, USA to evaluate how the choice of model structure, including spatial and non-spatial forms of univariate and multivariate models, affects ecological inference about the processes that shape community composition as well as model predictive ability. Incorporating residual spatial autocorrelation via spatial random effects did not improve out-of-sample prediction for the six tree species, although in-sample model fit was higher in the spatial models. Spatial models attributed less variation in occurrence probability to environmental covariates than the non-spatial models for all six tree species, and estimated higher (more positive) residual co-occurrence values for most species pairs. The non-spatial multivariate model was better suited for evaluating habitat suitability and hypotheses about the processes that shape community composition. Environmental correlations and residual correlations among species pairs were positively related, perhaps indicating that residual correlations were due to shared responses to unmeasured environmental covariates. This work highlights the importance of choosing a non-spatial model formulation to address research questions about the species–environment relationship or residual co-occurrence patterns, and a spatial model formulation when within-sample prediction accuracy is the main goal.  相似文献   

20.
Shade tolerance,canopy gaps and mechanisms of coexistence of forest trees   总被引:3,自引:0,他引:3  
The belief that canopy gaps are important for the maintenance of tree species diversity appears to be widespread, but there have been no formal theoretical models to assess under what conditions gap phase processes allow coexistence. Much of the empirical research on niche differentiation in response to gaps has focused on evidence for an interspecific tradeoff between low light survival and high light growth. The objectives of this study are first to distinguish the possible mechanisms allowing coexistence based on this tradeoff, and second, to explore their limitations. We present a theory of forest dynamics driven by small‐scale disturbances as a special case of the theory of coexistence in variable environments. We demonstrate that temporal and spatial heterogeneity in light conditions that results from canopy gaps can allow stable coexistence as a result of three previously documented general mechanisms: ‘relative non‐linearity’, ‘the successional niche’ and the ‘storage effect’. We find that temporal fluctuations in light availability alone allow the stable coexistence of only two species. Spatial variation in disturbance synchronicity and intensity allows three species to coexist in a narrow parameter space. The rate of extinction is, however, extremely slow and there is transient coexistence of a larger number of species for a long period of time. We conclude that while the low light survival/high light growth tradeoff may be ubiquitous in forest tree species, it is unlikely to function as an important mechanism for the stable coexistence of several tree species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号