首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phyllosphere bacteria on ornamental plants were characterized based on their diversity and activity towards the removal of polycyclic aromatic hydrocarbons (PAHs), the major air pollutants in urban area. The amounts of PAH-degrading bacteria were about 1–10% of the total heterotrophic phyllosphere populations and consisted of diverse bacterial species such as Acinetobacter, Pseudomonas, Pseudoxanthomonas, Mycobacterium, and uncultured bacteria. Bacterial community structures analyzed by polymerase chain reaction–denaturing gradient gel electrophoresis from each plant species showed distinct band patterns. The uniqueness of these phyllosphere bacterial communities was partly due to the variation in leaf morphology and chemical properties of ornamental plants. The PAH degradation activity of these bacteria was monitored in gas-tight systems containing sterilized or unsterilized leaves. The results indicated that phyllosphere bacteria on unsterilized leaves were able to enhance the activity of leaves for phenanthrene removal. When compared between plant species, phenanthrene removal efficiency corresponded to the size of phenanthrene-degrading bacteria. In addition, phyllosphere bacteria on Wrightia religiosa were able to reduce other PAHs such as acenaphthylene, acenaphthene, and fluorine in 60-ml glass vials and in a 14-l glass chamber. Thus, phyllosphere bacteria on ornamental plants may play an important role in natural attenuation of airborne PAHs in urban areas.  相似文献   

2.
Acid sulfate soils, peat soils, sandy podzolic, and saline soils are widely distributed in Peninsular Thailand. Native plants adapted to such problem soils have grown well, and showed no symptom of mineral deficiency or toxicity. Dominant plants growing in low pH soils (acid sulfate and peat) were Melastoma marabathricum and Melaleuca cajuputi. Since M. marabathricum accumulated a huge amount of aluminum (Al) in leaves, especially in new growing leaves, it can be designated an Al accumulator plant. While M. cajuputi did not accumulate Al in shoot, it can be designated an Al excluder plant. Both plant species adapted well to low pH soils, though a different strategy was used for Al. On the other hand, in acid sulfate and peat soils, M. cajuputi, Panicum repens, Cyperus haspan, and Ischaemum aristatum accumulated large amounts of Na in the leaves (or shoots), even in soil with low exchangeable Na concentration. Thus, when growing in the presence of high Al and Na concentration in soils, plant species have developed two opposite strategies: (1) Al or Na accumulation in the leaf and (2) Al or Na exclusion from the leaf. Al concentration in leaves had a negative relationship with the other mineral nutrients except for N and Mn, and Na concentration in leaves also had a negative relationship with P, Zn, Mn, Cu, and Al. Consequently, Al and Na accumulator plants are characterized by their exclusion of other minerals from their leaves.  相似文献   

3.
Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.  相似文献   

4.
1. The lack of consistent differences between the traits of native and non‐native plant species makes it difficult to make general predictions about the ecological impact of invasive plants; however, the increasing number of non‐native plants in many habitats makes the assessment of the impact of each individual species impracticable. General knowledge about how specific plant traits are linked to their effects on communities or ecosystems may be more useful for predicting the effect of plant invasions. Specifically, we hypothesised that higher carbon‐to‐nitrogen ratio (C:N) and percent lignin in plant detritus would reduce the rate of development and total mass at metamorphosis of tadpoles, resulting in lower metamorph production (total fresh biomass) and amphibian species richness. 2. To test these hypotheses, we raised five species of tadpoles in mesocosms containing senescent leaves of three common native and three common non‐native wetland plants that varied in C:N ratio and % lignin. 3. Leaf mass loss, total metamorph production and the number of species that metamorphosed declined as a function of increasing C:N ratio of plant leaves. Plant lignin content was not related to the production of metamorphs or the number of species that metamorphosed. The percentage of wood frog (Lithobates sylvaticus) and American toad (Anaxyrus americanus) tadpoles reaching metamorphosis declined as a function of increasing plant C:N ratio. Mean time to metamorphosis increased and mean mass at metamorphosis declined as a function of increasing plant C:N ratio. Tadpole performance and metamorph diversity and production (biomass) were similar between native and non‐native plant species with similar C:N ratio in leaves. Percent lignin was not a significant predictor of tadpole performance. 4. Our results show that the impact of a plant invasion on tadpole performance could depend on differences between the quality of the detritus produced by the invading species and that of the native species it replaces. We suggest that plant community changes that lead to dominance by more recalcitrant plant species (those with higher leaf C:N ratio) may negatively affect amphibian populations.  相似文献   

5.
以内蒙古锡林河流域沿水分梯度分布的灰脉苔草(Carex appendiculata)、贝加尔针茅(Stipa baicalensis)、羊草(Leymus chinensis)、大针茅(Stipa grandis)、小叶锦鸡儿(Caragana microphylla)和冷蒿(Artemisia frigida) 6个草地群落为对象, 研究了围封禁牧与放牧样地中144个共有植物种的高度、丛幅面积、茎、叶和株(丛)生物量、茎叶比等性状。结果表明: 1)在个体水平上, 放牧样地中植物的生殖枝高度、营养枝高度、丛幅面积、单株(丛)生物量、茎、叶生物量和茎叶比均显著低于围封禁牧样地, 植物在放牧干扰下表现出明显的小型化现象; 2)在群落水平上, 放牧亦显著降低了群落总生物量和茎、叶生物量; 3)过度放牧显著改变了物种的资源分配策略, 使生物量向叶的分配比例增加, 向茎的分配比例减少。资源优先向同化器官分配可能是植物对长期放牧干扰的一种重要适应对策; 4)轻度放牧对物种的资源分配没有显著影响, 单株(丛)生物量和群落茎、叶及总生物量均表现出增加趋势, 这与过度放牧的影响正好相反。过度放牧引起的植物个体小型化改变了生态系统中物种的资源分配策略, 进而对生态系统功能产生重要的影响。  相似文献   

6.
王海锋  曾波  乔普  李娅  罗芳丽  叶小齐 《生态学报》2008,28(6):2571-2571~2580
人工构建三峡库区消落区植被是控制消落区水土流失、保护消落区生态环境的重要措施,选择能够耐受长时间完全水淹的植物物种是该措施实施的关键.为了验证香根草、菖蒲、空心莲子草能否用于消落区植被的构建,实验模拟消落区的长期完全水淹条件,设置30d、60d、90d、120d、150d和180d等6个完全水淹时间水平,研究了3种植物在完全水淹条件下生长、生物量积累及存活状况.结果发现:(1)3种植物在经受长时间的完全水淹后有较高的存活率,180d全淹处理后,香根草、菖蒲和空心莲子草的存活率分别为87.5%、100%和50%.(2)这3种植物有不同的水下生长能力.全淹条件下,香根草生长缓慢,几乎没有产生新的叶片,总叶长也没有显著变化;菖蒲能够持续产生较对照植株更为细长的叶片,空心莲子草只在水淹初期(30d内)能够快速伸长地上部分的枝条,并迅速产生新叶片,但随水淹时间的延长,总枝条长及总叶片数没有再显著增加.(3)与对照植株相比,全淹处理抑制了3种植物总生物量的增加,但对3种植物的地上、地下部分生物量抑制程度不同.全淹条件下,香根草的地上部分和地下部分生物量与水淹0d水平(水淹处理开始前一天,下同)相比无显著变化,根冠比高于对照植株;菖蒲的地上部分生物量随水淹时间延长而降低,但却高于对照植株,地下部分生物量始终低于水淹0d水平,根冠比低于对照植株;空心莲子草的地上部分生物量与水淹0d水平相比无显著差异,但地下部分生物量与水淹0d水平相比大幅降低,根冠比低于对照植株.结果表明,这3种植物都有很强的水淹耐受能力,可应用于三峡库区消落区植被的构建.同时,发现植物对长期完全水淹的耐受能力很大程度上与植株在水下的生长情况及植株的营养储备水平相关,剧烈的水下生长会消耗大量的营养储备,进而造成植株存活率降低.植株在全淹条件下有限的生长能力及丰富的营养储备可能是耐淹物种的重要特征.  相似文献   

7.
为探讨滨海沙生植物对环境的适应策略,对海南岛滨海沙生植物单叶蔓荆、苦郎树、马缨丹、飞机草、假马鞭、厚藤的叶片主要功能性状分异特征及其土壤因子的关系进行了研究。结果表明,热带滨海沙生植物叶片功能性状存在明显的种间分异,叶片功能性状不仅受植物种类的影响,还受土壤因子影响;比叶面积呈现草本>灌木>藤本的规律;叶片的N/P为7.78~10.85,热带滨海沙生植物生长受土壤氮限制;叶片功能性状中Na含量的变异系数最大(18.46%~76.36%),说明不同植物对Na+的吸收存在较大差异,这将影响其在滨海沙地的自然分布;比叶面积、叶干物质含量与叶片的K、Na含量呈负相关,叶N/P与土壤Na+含量呈负相关,叶片Na+含量与土壤有机质、全磷、全钾呈负相关,土壤盐分限制植物对氮磷的吸收,滨海沙生植物通过比叶面积变化来适应盐胁迫。因此,在滨海沙生植被恢复中,施加土壤肥力是其快速恢复的重要措施,叶片Na+含量可作为滨海沙生植物耐盐性筛选的主要指标。  相似文献   

8.
The wild edible plants form an important constituent of traditional diets in the Himalaya. In the Sikkim Himalaya a total of 190 species have been screened as edible species out of which nearly 47 species come to the market. The present paper deals with nutritive values of 27 most commonly consumed wild edible plants in the Sikkim Himalaya. Of 27 plant species that were analyzed for their nutritive values, 22 were edible for their fruits and five for leaves/shoots. Among different plant parts, generally higher nutrient concentration was recorded for leaves, followed by new shoots and fruits. For different species the crude fiber content ranged between 2.15–39.90%, and the total soluble salts between 4.66–21.0%, and the vitamin C content from 6-286 mg/100 g. The fat content was determined high in the fruits of Castanopsis species, Machilus edulis, and Cinnamomum species, while the protein content was highest in Hippophae rhamnoides, Cuc-umis melo, and Eleagnus latifolia. The total carbohydrate content ranged from 32-88% in the fruits of various wild edibles, the reducing sugar from 1.25–12.42%, total sugar from 2.10–25.09%, the lignin content varied from 9.05–39.51%, the hemicellulose between 25.63-55.71% and cellulose content varied from 9.57–33.19% in different species. Among the various mac-ronutrients estimated in the plant samples of different wild edible species, nitrogen was present in highest quantity, followed by potassium, calcium, magnesium, phosphorus, and sodium. Mi-cronutrients, such as iron, zinc, magnesium, and copper contents were analyzed in different plant parts of various wild edible species. The iron content was higher in leaves and new shoots. The study shows that wild edible plants are good source of nutrient for rural population, and also well comparable with various commercial fruits. It is suggested that a few wild edible species need to be grown for commercial cultivation and adopted in the traditional agroforestry systems, which will lead to reduced pressure on them in natural forest stands as well as producing economic benefits for poor farmers.  相似文献   

9.
The edible wild plants are greatly valued throughout the Himalayan region and serve as an important source of food for indigenous communities. This paper describes the botanical richness, elevational distribution and dietary use of the edible wild plant resources from the Sikkim Himalaya (Eastern Himalaya), many with promising potential. A total of 190 wild plant species have been screened from the Sikkim Himalaya, this derived from 143 genera and 78 families and accounting for nearly 15% of total edible wild plants resources of India. Of the total, 65% were edible for their fruits, 22% for leaves/shoots, 7% for flowers and 3% for roots/ rhizomes. Nearly 91 wild edible species were recorded from low-hills, 70 from mid-hills and 28 species from high-hill areas. Within Sikkim state, the North and East districts represent maximum diversity of edible wild plants due to the wilderness and inaccessibility to most of the habitats. An average rural family annually consumes nearly 8 types of edible wild plants, and a few species provide over five meals in a season. Selected plants also form a source of earning to a few families that sell them in local markets. It is suggested that the high diversity of edible plants needs to be conserved for future use. Some species may be grown in traditional agroforestry systems and on marginal lands of otherwise low agricultural value. Such measures may help protect wild plant resources in their natural habitats.  相似文献   

10.
In the context of widespread vegetation changes in Tsavo National Park, food habits of gerenuk are being investigated; the present paper gives an account of the results obtained during the first year of the study. Feeding of free-ranging gerenuk was observed from a landrover in two study areas with different vegetation types. Plant species eaten were determined in the field or collected for identification. Gerenuk feed almost exclusively on leaves, shoots, flowers, and a few fruits of trees and shrubs, as well as some climbers and vines, the latter mainly during the rainy seasons. No small herbs or grass were found to be eaten. The composition of the diet differed considerably between the two study areas, largely as a result of differences in the available vegetation. Seasonal variations in the diet are brought about mainly by variations in the availability of different food plants, notably the ratio between deciduous and evergreen species at different seasons. On the basis of a preliminary quantitative survey of the vegetation in the study areas, actual preferences have been evaluated. Some common plant species were found to be rejected altogether, although they are eaten by other browsing animals. A total of 68 plant species has so far been recorded as food plants, indicating that gerenuk are able to utilize a wide range of plants. In view of this adaptability, and of the abundance of preferred food plants in the study areas, the vegetation changes in Tsavo National Park do not, at present, appear to endanger the continued existence of the gerenuk.  相似文献   

11.
Present study was intended with the aim to document the pre-existence traditional knowledge and ethnomedicinal uses of plant species in the Palas valley. Data were collected during 2015–2016 to explore plants resource, their utilization and documentation of the indigenous knowledge. The current study reported a total of 65 medicinal plant species of 57 genera belonging to 40 families. Among 65 species, the leading parts were leaves (15) followed by fruits (12), stem (6) and berries (1), medicinally significant while, 13 plant species are medicinally important for rhizome, 4 for root, 4 for seed, 4 for bark and 1 each for resin. Similarly, thirteen species were used as a whole while twelve species as partial for medicinal purpose. Further, it is concluded that every part of plants such as bulb, rhizome, roots, barks, leaves, flowers, fruit and seed were used for various ailments. Moreover, among 65 plants species, 09 species are threatened and placed into Endangered (EN) and Least Concern (LC) categories of IUCN. The recorded data are very useful and reflects the significance of the Palas valley as medicinal plants resource area.  相似文献   

12.
鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征   总被引:15,自引:20,他引:15  
聂兰琴  吴琴  尧波  付姗  胡启武 《生态学报》2016,36(7):1898-1906
2013年11月初在鄱阳湖南矶湿地国家级自然保护区,采集芦苇(Phragmites australis)、南荻(Triarrhena lutarioriparia)、菰(Zizania latifolia(Griseb.))、灰化苔草(Carex cinerascens)、红穗苔草(Carex argyi)和水蓼(Polygonum hydropiper)等6种优势植物新鲜叶片、凋落物及表层0—15cm土壤样品测定了碳(C)、氮(N)、磷(P)含量,以阐明不同物种、不同生活型间C、N、P化学计量差异,探讨化学计量垂直分异。结果表明:1)C、N、P含量变化范围分别为:叶片380.6—432.2 mg/g,15.3—32.6 mg/g和1.3—2.0 mg/g;凋落物345.4—416.1 mg/g,10.8—20.8 mg/g和1.1—1.7 mg/g;土壤15.0—38.1 mg/g,1.2—3.1 mg/g和0.7—1.1mg/g,不同物种间叶片、凋落物及土壤C、N、P含量差异显著,且叶片C、N、P含量显著高于凋落物与土壤。2)土壤C∶N、C∶P及N∶P值显著低于叶片与凋落物,且土壤C、N、P化学计量关系与凋落物更为密切,凋落物的C∶N、N∶P分别能解释土壤C∶N、N∶P变异的35%、18%。3)挺水植物与湿生植物之间叶片C∶N、N∶P值差异显著,C∶P则差异不显著,凋落物C∶N、C∶P与N∶P均未达到显著性差异。  相似文献   

13.
The nutritional status of plants from high altitudes   总被引:28,自引:0,他引:28  
Ch. Körner 《Oecologia》1989,81(3):379-391
Summary Are plants at high altitudes short in nutrients? In order to answer this question the mineral nutrient content of leaves from over 150 plant species from 9 different mountain areas of all major climatic zones were analyzed (Kjeldahl nitrogen in all, phosphate in half of the samples, K, Mg, Mn, Ca in the Alps only). The majority of data are from herbaceous perennials, but shrubs and trees were studied as well. N-partitioning was studied in 45 herbaceous species from contrasting altitudes in the Alps. The survey falls into three categories: (1) comparisons of whole communities of species from contrasting altitudes, (2) analysis of altitudinal gradients, and (3) additional collections from high altitude sites alone. Unlike the other mineral nutrients, nitrogen content follows consistent altitudinal and latitudinal trends. The higher altitude sample always had higher N content per unit leaf area, irrespective of life form, wherever comparable plants (the same or related species) were investigated at contrasting altitudes. N content per unit dry weight (%) increased with altitude in herbaceous plants (in some species >4%), but was remarkably stable in evergreen woody plants (around 1%). The mean fraction of total plant N allocated to leaves of herbaceous plants in the Alps was the same at low and high altitude (1/3 of total). Leaf N (%) from the regional upper limits of higher plant life reveals a latitudinal decrease from subarctic to equatorial mountains, which may be related to the duration of annual leaf activity. Since mean N content per leaf area hardly differs between the uppermost sites, life span expectation (sink-duration) seems to control carbon investments rather than N input per leaf area. The growth of leaves at high altitude seems to be controlled in a way that leads to comparatively high nutrient contents, which in turn support high metabolic activity. Inherent developmental growth constraints inhibit nutrient dilution in the plant body and thus defy the application of classical concepts of plant-nutrient versus soil-nutrient relations developed for lowlands and in particular for cultivated plants. The results re-emphasize the global significance of links between nitrogen content, leaf sclerophylly, leaf longevity and photosynthetic capacity.Dedicated to Prof. Walter Larcher on the occasion of his 60th birthday, with thanks for leading me to comparative plant ecology  相似文献   

14.
Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few‐week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.  相似文献   

15.
Magnetic minerals, such as magnetite and hematite, have been reported to be present, in particular, leaves as biogenic particles. The magnetic minerals and properties of Ni hyperaccumulators have not previously been reported in the literature. This study aimed to characterize the magnetic properties of two Ni hyperaccumulating plant species, R. bengalensis and P. oxyhedra, which grow in an ultramafic region on Halmahera Island, Indonesia. For comparison, similar characterization was carried out on two non-hyperaccumulating plant species which grow in the same region. Concentrations of Ni, Fe, and Mn in the leaves of the hyperaccumulating plants were measured using atomic absorption spectroscopy (AAS) and their magnetic properties were characterized using measurements of magnetic susceptibility, low temperature magnetic susceptibility, and hysteresis curves. The results show that, compared to the non-hyperaccumulating plants, the Ni hyperaccumulating plants have higher concentrations of Ni and similar concentration of Fe. The magnetic susceptibilities of hyperaccumulating plants are positive, and those of non-hyperaccumulating plants are negative. This suggests that the abundance of Ni, rather than Fe, may control the magnetic properties of Ni hyperaccumulating plants. This probable connection between Ni concentration and plant magnetic properties could be advantageous for identifying hyperaccumulators, and should, therefore, be explored further.  相似文献   

16.
The stoma freguency and distribution on both epidermis of leaves of 65 species of C3 plants, 49 species of C4 plants and 16 species of CAM plants were studied by impres- sion method with colorless nail oil. The results indicated that distribution of stoma on both epidermis of leaves was in relation to the photosynthetic pathway and living type. The stoma ratio of upper/lower of C3 plants was 0.45 (sun herb) and 0.07 (shade herb), no stoma was found on upper epidermis of leaves of ferns, shrubs and trees. Plants with C4 photosynthetic pathway, except a few species, showed a higher stoma ratio of upper/lower 0.64 (Cyperaceae), 0.82 (dicot) and 0.94 (Oramineae). Much less stoma frequency was found in CAM plants than in C3 and C4 plant, but the stoma ratio of upper/lower was equal. In C3 crop plants, the species with shorter growth period and higher yield, such as sunflower, peanut and some leafy vegetables had higher stoma ratio of upper/lower. It is supposed that the stoma ratio of upper/lower might be used as an helpful index for identifing the C4 plants in monocot grass. It was also considered that the photosynthetic rate of amphistomatous leaves of C3 plants with same living type was related to the stoma ratio of upper/lower.  相似文献   

17.
Secondary compounds can contribute to the success of non‐native plant species if they reduce damage by native herbivores or inhibit the growth of native plant competitors. However, there is opposing evidence on whether the secondary compounds of non‐native plant species are stronger than those of natives. This may be explained by other factors, besides plant origin, that affect the potential of plant secondary compounds. We tested how plant origin, phylogeny, growth strategy and stoichiometry affected the allelopathic potential of 34 aquatic plants. The allelopathic potential was quantified using bioassays with the cyanobacterium Dolichospermum flos‐aquae. The allelopathic potential showed a strong phylogenetic signal, but was similar for native and non‐native species. Growth strategy was important, and emergent plants had twice the allelopathic potential as compared to submerged plants. Furthermore, the allelopathic potential was positively correlated to the foliar carbon‐to‐phosphorus (C:P) and total phenolic content. We conclude that eudicot plant species with an emergent growth strategy and high plant C:P ratio exhibit a high allelopathic potential. Unless non‐native plant species match this profile, they generally have a similar allelopathic potential as natives.  相似文献   

18.
为研究三峡水库消落带优势植物的养分利用特征及其对生境的适应策略,选择消落带分布最多的4种草本植物为研究对象,分析了植物根、茎、叶的碳(C)、氮(N)、磷(P)、钾(K)含量和化学计量比特征。结果表明:(1)相比陆地系统和自然湿地系统,消落带植物具有较低的C含量和较高的N、P、K含量,C/N、C/P、C/K均较低,表明植物具有低固碳和高养分积累、低养分利用效率和高生长速率的特征;(2)4种植物的养分含量和计量比存在一定差异,其中狗牙根具有较低的N、P、K含量和较高的C/N、C/P、C/K,且变异系数均低于其他3种植物,其低养分需求、高养分利用效率以及较强的内稳性可能是其在库区分布最广的重要机制;(3)4种植物在不同器官的养分分配策略相似,均表现为叶片C含量低于根和茎,而N、P、K含量则显著高于根、茎;同时,与根、茎相比,叶片C/N、C/P、C/K较低,N/P、N/K较高,且在不同生境条件下变异系数较小,表现出相对较高的稳定性;(4)落消带植物的养分含量及计量比从全库区上游至下游的空间变异性较强,其中N、C/N、N/P变异性较大,而C、P、K变异性较小,表明植物N含量受生境变化的影响较大,加之消落带不同植物生长均受到严格的N限制,因此N供给可能是影响消落带生态系统结构的重要因子。三峡库区消落带植物生态化学计量特征具有明显的变异性和特殊性,是植物群落演替及生态系统功能变化的重要驱动因素。  相似文献   

19.
植物的表型可塑性、异速生长及其入侵能力   总被引:2,自引:0,他引:2  
表型可塑性是指同一个基因型对不同环境响应产生不同表型的特性,特定性状的可塑性本身可以遗传,也可以接受选择而发生进化。植物个体的异速生长是指生物体某一特征的相对生长速率不等于第二种特征的相对生长速率的特性,该特性是由物种的遗传性决定的一种固定特征,植物往往朝着最佳的异速生长曲线进化。植物特定基因型在不同环境下,诸如生物量分配和种群几何学上的一些表型差异,既可由异速生长造成,也可由表型可塑性造成。植物本身的异速生长是一种"外观可塑性",而异速生长曲线的改变才是真正的可塑性。植物的表型可塑性、异速生长对于入侵植物的适应具有重要意义。干扰等异质性生境下表型可塑性成为物种生存扩散的有利性状,表型可塑性强的物种更有可能成为广布种。植物本身的异速生长特性或其异速生长曲线的改变都能影响其入侵能力。  相似文献   

20.
Ramonda nathaliae (Gesneriaceae) is a rare desiccation tolerant flowering plant species of the Northern Hemisphere. This, mainly calcicole, preglacial relict species is endemic in the Balkan Peninsula, where it has survived in its refugial habitats of gorges and mountain slopes. At present, only two localities within its narrow range are known where it thrives in hostile serpentine habitats, and the adverse serpentine environment is bound to present further challenge to the adaptive capacity of R. nathaliae. In general, the occurrence of a resurrection flowering plant on serpentine soil is exceptional and the soil-plant relation of R. nathaliae in those circumstances is described here for the first time. The aim of this study was (i) to analyze mineral elements composition in soil from both serpentine and limestone habitats of the species and to compare the way peculiarities of the substrates are reflected in roots and leaves of plants from the respective soils; (ii) to evaluate the effect of heavy metal overload on the habit of serpentine R. nathaliae individuals. Serpentine soil, characterized by high levels of phytotoxic heavy metals (Ni, Cr, Co, Mn), hosts plants showing elevated metal contents in their organs. Ramonda plants from serpentine populations are able to maintain balance of Ca to Mg favourable to Ca (2.0 in roots, 2.7 in leaves) despite a strongly unfavourable Ca/Mg ratio in the soil (0.09). The greatest difference in concentrations was observed for the Ni content in plant tissues: serpentine plants had 57 and 20 times more Ni in their roots and leaves than the plants from limestone. Aluminium was present in similar concentrations in both soils, and was highly accumulated in plant tissues of the plants from both substrates. Metal-specific metabolic activity is demonstrated in bioaccumulation indices of several essential minerals (Ca, Mg, Cu, Zn). A significantly higher metal content found in roots in relation to leaves might indicate the plant's ability to immobilize the metals within the root tissues. Mycorrhizal fungi colonize plant roots from both substrates and apparently are important in improving the supply of nutrients, but they could also take part in toxic metal immobilization. The price of adaptation to the hostile environment is evident in the habit of R. nathaliae plants growing on serpentine: reduced size of rosettes and leaves, as well as chlorotic and necrotic leaf tips and margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号