首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of ground fires in transformation of organic substance in the ground cover of larch stands in the permafrost zone of Central Siberia was studied as well as the post-fire restoration dynamics of organic substance. Ground fires lead to is a considerable decrease in concentrations and resources of organic carbon and its individual fractions in the ground cover and their restoration takes many decades.  相似文献   

2.
Based on the MODIS radiometer data, the level of disturbance of forest lands by fires has been estimated for southwestern areas of the Zabaikal region. A combined analysis of vegetation indices calculated by measuring reflected radiation in the near and mid-infrared wave ranges and the data of on-ground studies allowed us to identify sites with successful and poor reforestation. Based on the instrumental data, it is found that repeated fires prevent successful reforestation. An analysis of seasonal dynamics indicates that summer fires result in greater damages of forest vegetation than those caused by spring fires. Larch stands prevailing in the region cover the largest portion of fire-disturbed lands (and the largest area, where reforestation processes are hampered), while pine and deciduous stands are characterized by a higher frequency of fires.  相似文献   

3.
Expansion of woody species into herbaceous wetlands is a serious concern in wetland management. Prescribed fire is often used as a tool to manage woody species, although many species resprout after fire making control problematic. In this study, we assessed the usefulness of repeated dormant season fires for controlling Salix caroliniana (Michx.) in a floodplain marsh in Florida. Salix is a common shrub in southeastern marshes that resprouts prolifically after fire. We compared stem basal area, stem density, and cover of Salix in three adjacent sites in a floodplain marsh in east central Florida. One site was burned once in February 1997, another site was burned in February 1997 and then again in March 1999 and one site was left unburned. At the unburned site, Salix stem basal area, stem density, and cover increased over the course of the study. In the two burned sites, the first fire destroyed large diameter stems and stimulated production of sprouts. As a result, stem basal area and cover decreased but stem density remained unchanged. The second fire caused a decline in stem density and a further decline in cover. Changes in understory species composition and cover could not be attributed to the fires. Our results suggest that dormant season fires are effective in reducing Salix cover and basal area, and that repeated fires have greater effects than a single fire.  相似文献   

4.
Ground fuel loads and structure in dark-coniferous forests with the dominance of Siberian pine have been studied in the Central Siberian State Nature Biosphere Reserve located in the central-taiga zone of Central Siberia. The impacts of surface fires of various forms and severity on the living ground cover are examined. It is found that fires of low to moderate severity reduce ground fuel loads from 35–49 t/ha to 26–28 t/ha, while fires of moderate to high severity reduce them to 17–18 t/ha. Consumption of down woody debris varies from 3 to 29 t/ha, depending on the prefire fuel characteristics and fire form and severity. Steady fires spreading with the fire danger index PV-1 of 3919 ± 482 result in carbon emissions of 14.0 tC/ha from fires of low to moderate severity and 24.6 tC/ha from fires of moderate to high severity. The lowest carbon emissions (10.1 tC/ha) are noted for fast-moving fires spreading with PV-1 of 1167 ± 386.  相似文献   

5.
Questions: Can prescribed fire restore C4 perennial grasses in grassland ecosystems that have become dominated by fire‐resistant C3 shrubs (Prosopis glandulosa) and C3 grasses? Do fires in different seasons alter the direction of change in grass composition? Location: Texas, USA. Methods: We quantified short‐ and long‐term (12 yr post‐fire) herbaceous functional group cover and diversity responses to replicated seasonal fire treatments: (1) repeated‐winter fires (three in 5 yr), (2) repeated‐summer fires (two in 3 yr), and (3) alternate‐season fires (two winter and one summer in 4 yr), compared with a no‐fire control. Results: Summer fires were more intense than winter fires, but all fire treatments temporarily decreased Prosopis and C3 annual grass cover. The alternate‐season fire treatment caused a long‐term increase in C4 mid‐grass cover and functional group diversity. The repeated‐summer fire treatment increased C4 short‐grass cover but also caused a long‐term increase in bare ground. The repeated winter fire treatment had no long‐term effects on perennial grass cover. Mesquite post‐fire regrowth had increasingly negative impacts on herbaceous cover in all fire treatments. Conclusions: Summer fire was necessary to shift herbaceous composition toward C4 mid‐grasses. However, the repeated‐summer fire treatment may have been too extreme and caused post‐fire herbaceous composition to “over‐shift” toward less productive C4 short‐grasses rather than C4 mid‐grasses. This study provides some of the first long‐term data showing a possible benefit of mixing seasonal fires (i.e., the alternate‐season fire treatment) in a prescribed burning management plan to restore C4 mid‐grass cover and enhance overall herbaceous diversity.  相似文献   

6.
The impact of surface fires varying intensity on the living ground vegetation in the middle-taiga forests of Central Siberia are studied. It is revealed that fires, regardless of their intensity, decrease the percentage cover and the biomass of living ground vegetation; they also destroy the moss and lichen layer. The postfire recovery of the ground vegetation at the initial stage of postfire succession is determined by the prefire forest type, the fire intensity, and the burn depth of the litter.  相似文献   

7.
Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.  相似文献   

8.
Borneo has experienced heavy deforestation and forest degradation during the past two decades. In this study the Moderate Resolution Imaging Spectroradiometer was used to monitor land cover change in Borneo between 2002 and 2005 in order to assess the current extent of the forest cover, the deforestation rate and the role of fire. Using Landsat and ground observation for validation it was possible to discriminate 11 land cover classes. In 2002 57% of the land surface of Borneo was covered with forest of which 74% was dipterocarp and more than 23% peat swamp forest. The average deforestation rate between 2002 and 2005 was 1.7% yr− 1. The carbon-rich ecosystem of peat swamp forests showed a deforestation rate of 2.2%. Almost 98% of all deforestation occurred within a range of 5 km to the forest edge. Fire is highly correlated with land cover changes. Most fires were detected in degraded forests. Ninety-eight per cent of all forest fires were detected in the 5 km buffer zone, underlining that fire is the major driver for forest degradation and deforestation.  相似文献   

9.
Intensification of fires and grazing by large herbivores has caused population declines in small vertebrates in many ecosystems worldwide. Impacts are rarely direct, and usually appear driven via indirect pathways, such as changes to predator-prey dynamics. Fire events and grazing may improve habitat and/or hunting success for the predators of small mammals, however, such impacts have not been documented. To test for such an interaction, we investigated fine-scale habitat selection by feral cats in relation to fire, grazing and small-mammal abundance. Our study was conducted in north-western Australia, where small mammal populations are sensitive to changes in fire and grazing management. We deployed GPS collars on 32 cats in landscapes with contrasting fire and grazing treatments. Fine-scale habitat selection was determined using discrete choice modelling of cat movements. We found that cats selected areas with open grass cover, including heavily-grazed areas. They strongly selected for areas recently burnt by intense fires, but only in habitats that typically support high abundance of small mammals. Intense fires and grazing by introduced herbivores created conditions that are favoured by cats, probably because their hunting success is improved. This mechanism could explain why, in northern Australia, impacts of feral cats on small mammals might have increased. Our results suggest the impact of feral cats could be reduced in most ecosystems by maximising grass cover, minimising the incidence of intense fires, and reducing grazing by large herbivores.  相似文献   

10.
Fire has an important role in the sensory ecology of many animals. Using acoustic cues to detect approaching fires may give slow-moving animals a head start when fleeing from fires. We report that aestivating juvenile reed frogs (Hyperolius nitidulus) respond to playbacks of the sound of fire by fleeing in the direction of protective cover, where they are safe. This is a novel response to fire not known to occur in other animals. Moreover, we identify the rapid rise-time of the crackling sound of fire as the probable cue used. These results suggest that amphibian hearing not only has evolved through sexual selection, but also must be viewed in a broader context.  相似文献   

11.
The purpose of this study was to determine whether fire recurrence modifies the regeneration capacity of Quercus coccifera garrigues in the Valencia region (eastern Spain). We studied several areas with different fire recurrences (1, 2 and 3 fires in 16 years), all of which had sustained a common last fire in 1994. Three-and-a-half years after the last fire, differences between the 3 fire recurrences were not detected with respect to total plant cover and Q. coccifera cover, with a mean value between 92 and 76%. On the most frequently burned sites, herbaceous and subshrub species cover showed a tendency to increase, while that of the obligate seeding shrub, Ulex parviflorus, decreased with both fire frequency and shorter last-fire interval. The most recurrently burned areas with the shortest last-fire intervals presented higher species richness, which mainly affected the herbaceous and subshrub species group, and of these, the hemichryptophytes. The major effect of fire recurrence was the significant decrease in stem and total biomass of Q. coccifera in the three studied sites. Three-and-a-half years after the fire, the mean total biomass values were around 1500, 1000 and 700 g. m−2 in the garrigues with 1, 2 and 3 fires respectively. Stem production was more affected than leaf production. Leaf area index values showed the same pattern as leaf biomass. Recurrent fires also caused a decrease in net primary production measured the fourth year after fire. The results point to the fact that fire recurrence can cause depletion in garrigue productivity and recovery capacity in southern areas, in contrast with the high resilience observed in northern Mediterranean garrigues.  相似文献   

12.
Questions: How do fire frequency, tree canopy cover, and their interactions influence cover of grasses, forbs and understorey woody plants in oak savannas and woodlands? Location: Minnesota, USA. Methods: We measured plant functional group cover and tree canopy cover on permanent plots within a long‐term prescribed fire frequency experiment and used hierarchical linear modeling to assess plant functional group responses to fire frequency and tree canopy cover. Results: Understorey woody plant cover was highest in unburned woodlands and was negatively correlated with fire frequency. C4‐grass cover was positively correlated with fire frequency and negatively correlated with tree canopy cover. C3‐grass cover was highest at 40% tree canopy cover on unburned sites and at 60% tree canopy cover on frequently burned sites. Total forb cover was maximized at fire frequencies of 4–7 fires per decade, but was not significantly influenced by tree canopy cover. Cover of N‐fixing forbs was highest in shaded areas, particularly on frequently burned sites, while combined cover of all other forbs was negatively correlated with tree canopy cover. Conclusions: The relative influences of fire frequency and tree canopy cover on understorey plant functional group cover vary among plant functional groups, but both play a significant role in structuring savanna and woodland understorey vegetation. When restoring degraded savannas, direct manipulation of overstorey tree canopy cover should be considered to rapidly reduce shading from fire‐resistant overstorey trees. Prescribed fires can then be used to suppress understorey woody plants and promote establishment of light‐demanding grasses and forbs.  相似文献   

13.
Abstract The native annual Sorghum populations of the Australian wet-dry tropics are highly resilient to dry season fires. During the early wet season, however, fires that occur after the new grass population has emerged can cause catastrophic population crashes. We examined savanna plots that had been burnt in this way, and compared them with adjacent unburnt plots. We found that Sorghum densities in the burnt plots were lower on average by a factor of 10, but that some fires had reduced the density only to one-third of the unburnt plots. It is not clear whether these differences relate directly to site or seasonal factors, or to differences in the way the burning was carried out. Other vegetation components responded to the fires differently: forbs (dicotyledonous herbs) increased in cover, while perennial grasses, woody plants, and overall species richness, were not significantly affected. The amount of leaf litter declined. A population model for Sorghum based on the demography of unburnt populations predicted that they should recover from a wet season burn, taking 7–16 years to return to normal densities. However, the actual field populations did not seem to be recovering, suggesting that wet season fires not only lower densities, but may also fundamentally change population processes in these annual grasses.  相似文献   

14.
Question: In deciduous‐dominated forest landscapes, what are the relative roles of fire weather, climate, human and biophysical landscape characteristics for explaining variation in large fire occurrence and area burned? Location: The Great Lakes‐St. Lawrence forest of Canada. Methods: We characterized the recent (1959–1999) regime of large (≥ 200 ha) fires in 26 deciduous‐dominated landscapes and analysed these data in an information‐theoretic framework to compare six hypotheses that related fire occurrence and area burned to fire weather severity, climate normals, population and road densities, and enduring landscape characteristics such as surficial deposits and large lakes. Results: 392 large fires burned 833 698 ha during the study period, annually burning on average 0.07%± 0.42% of forested area in each landscape. Fire activity was strongly seasonal, with most fires and area burned occurring in May and June. A combination of antecedent‐winter precipitation, fire season precipitation deficit/surplus and percent of landscape covered by well‐drained surficial deposits best explained fire occurrence and area burned. Fire occurrence varied only as a function of fire weather and climate variables, whereas area burned was also explained by percent cover of aspen and pine stands, human population density and two enduring characteristics: percent cover of large water bodies and glaciofluvial deposits. Conclusion: Understanding the relative role of these variables may help design adaptation strategies for forecasted increases in fire weather severity by allowing (1) prioritization of landscapes according to enduring characteristics and (2) management of their composition so that substantially increased fire activity would be necessary to transform landscape structure and composition.  相似文献   

15.
Conservation of uncultivated habitats can increase the potential for ecosystem services in agroecosystems, but these lands are also susceptible to wildfires in the arid western United States. In Napa Valley, California, abundant rodent pests and an interest in integrated pest management have led wine producers to use nest boxes to attract Barn Owls (Tyto furcata) to winegrape vineyards. The viability of this practice as a method to control rodent pests depends heavily on the amount of hunting effort that Barn Owls expend in vineyards, which is known to be influenced by the amount of uncultivated land cover types surrounding the nest box. Wildfires burned nearly 60,000 ha of mainly urban and uncultivated lands surrounding Napa Valley in 2017, altering Barn Owl habitats. We compared GPS tracking data from 32 Barn Owls nesting in 24 individual nest boxes before and after the fires to analyze their hunting habitat selection. Owls with burned areas available to them after the fires had home ranges that shifted toward the fires, but selection was not strongly associated with burned areas. Though there was some spatial use of burned areas, selection of land cover types was similar for birds before and after the fires and in burned and unburned areas. The strongest selection was for areas closest to the nest box, and most recorded locations were in grassland, though selection indicated that owls used land cover types in proportion to their availability. Overall, habitat selection was resilient to changes caused by wildfires. These results are important for farmers who use nest boxes as a means of rodent control, which may be affected after dramatic disturbance events, especially as wildfires increase in the western United States.  相似文献   

16.
Land use history reconstructions in temperate regions of the Northern Hemisphere indicate that periods of deforestation are often followed by natural afforestation, so that the long-term outcome at the landscape level will be a balance of retractions and advances of plant communities associated with varying local land uses. During the last decades of the XIX century, large forest areas were cleared in Northwestern Patagonia to open farmland. In this article, we compared historical land use/land cover maps with land cover maps derived from Landsat images to analyze the factors that may have influenced the dynamics of land cover change of the forest-steppe ecotone during the last 100 years. Our results indicate that Patagonian forests underwent a rapid initial recovery after the extensive fires of last century, replacing mainly shrublands. More than 50% of the old burns are currently covered by forests, and modern fires affect areas characterized by fire-prone vegetation. Whereas natural afforestation is an ongoing process positively associated with moisture, the rate of forest losses has increased during the last three decades, concentrating on xeric aspects and the vicinity of roads. We conclude that the outcome of the dynamics between fire-intolerant forests and fire-prone plant communities will largely depend on human-related activities, modeled by structural features of the landscape (i.e., topography, dominant winds), and processes triggered by past land uses.  相似文献   

17.
Aim This study appraises historical fire regimes for Californian mixed‐conifer forests of the Sierra San Pedro Mártir (SSPM). The SSPM represents the last remaining mixed‐conifer forest along the Pacific coast still subject to uncontrolled, periodic ground fire. Location The SSPM is a north–south trending fault bound range, centred on 31°N latitude, 100 km SE of Ensenada, Baja California. Methods We surveyed forests for composition, population structure, and historical dynamics both spatially and temporally over the past 65 years using repeat aerial photographs and ground sampling. Fire perimeter history was reconstructed based on time‐series aerial photographs dating from 1942 to 1991 and interpretable back to 1925. A total of 256 1‐ha sites randomly selected from aerial photographs were examined along a chronosequence for density and cover of canopy trees, density of snags and downed logs, and cover of non‐conifer trees and shrubs. Twenty‐four stands were sampled on‐the‐ground by a point‐centred quarter method which yielded data on tree density, basal area, frequency, importance value, and shrub and herb cover. Results Forests experience moderately intense understory fires that range in size to 6400 ha, as well as numerous smaller, low intensity burns with low cumulative spatial extent. SSPM forests average 25–45% cover and 65–145 trees per ha. Sapling densities were two to three times that of overstory trees. Size‐age distributions of trees ≥ 4 cm dbh indicate multi‐age stands with steady‐state dynamics. Stands are similar to Californian mixed conifer forests prior to the imposition of fire suppression policy. Livestock grazing does not appear to be suppressing conifer regeneration. Main conclusions Our spatially‐based reconstruction shows the open forest structure in SSPM to be a product of infrequent, intense surface fires with fire rotation periods of 52 years, rather than frequent, low intensity fires at intervals of 4–20 years proposed from California fire‐scar dendrochronology (FSD) studies. Ground fires in SSPM were intense enough to kill pole‐size trees and a significant number of overstory trees. We attribute long fire intervals to the gradual build‐up of subcontinuous shrub cover, conifer recruitment and litter accumulation. Differences from photo interpretation and FSD estimates are due to assumptions made with respect to site‐based (point) sampling of fire, and nonfractal fire intensities along fire size frequency distributions. Fire return intervals determined by FSD give undue importance to local burns which collectively use up little fuel, cover little area, and have little demographic impact on forests.  相似文献   

18.
A grass–fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha−1). Experimental fires, with fuel loads >10 t·ha−1, typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号